852 resultados para Fabrication of polymer optical fibres


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Browse > Journals> Automation Science and Enginee ...> Volume: 5 Issue: 3 Microassembly Fabrication of Tissue Engineering Scaffolds With Customized Design 4468741 abstract Han Zhang; Burdet, E.; Poo, A.N.; Hutmacher, D.W.; GE Global Res. Center Ltd., Shanghai This paper appears in: Automation Science and Engineering, IEEE Transactions on Issue Date: July 2008 Volume: 5 Issue:3 On page(s): 446 - 456 ISSN: 1545-5955 Digital Object Identifier: 10.1109/TASE.2008.917011 Date of Current Version: 02 July 2008 Sponsored by: IEEE Robotics and Automation Society Abstract This paper presents a novel technique to fabricate scaffold/cell constructs for tissue engineering by robotic assembly of microscopic building blocks (of volume 0.5$,times,$0.5$,times,$0.2 ${hbox{mm}}^{3}$ and 60 $mu {hbox{m}}$ thickness). In this way, it becomes possible to build scaffolds with freedom in the design of architecture, surface morphology, and chemistry. Biocompatible microparts with complex 3-D shapes were first designed and mass produced using MEMS techniques. Semi-automatic assembly was then realized using a robotic workstation with four degrees of freedom integrating a dedicated microgripper and two optical microscopes. Coarse movement of the gripper is determined by pattern matching in the microscopes images, while the operator controls fine positioning and accurate insertion of the microparts. Successful microassembly was demonstrated using SU-8 and acrylic resin microparts. Taking advantage of parts distortion and adhesion forces, which dominate at micro-level, the parts cleave together after assembly. In contrast to many current scaffold fabrication techniques, no heat, pressure, electrical effect, or toxic chemical reaction is involved, a critical condition for creating scaffolds with biological agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The osteochondral defect is a classical model for a multiple-tissue problem[1]. Tissue engineering of either bone or cartilage imposes different demands on a scaffold concerning porosity, pore size and interconnectivity. Furthermore, local release of tissue-specific growth factors necessitates a tailored architecture. For the fabrication of an osteochondral scaffold with region specific architecture, an advanced technique is required. Stereolithography is a rapid prototyping technique that allows for the creation of such 3D polymer objects with well-defined architecture. Its working principle is the partial irradiation of a resin, causing a liquid-solid transition. By irradiating this resin by a computer-driven light source, a solid 3D object is constructed layer by layer. To make biodegradable polymers applicable in stereolithography, low-molecular weight polymers have to be functionalised with double bonds to enable photo-initiated crosslinking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hollow micro-sized H2(H2O)Nb2O6 spheres constructed by nanocrystallites have been successfully synthesized via a bubble-template assisted hydrothermal process. In the reaction process, H2O2 acts as a bubble generator and plays a key role in the formation of the hollow structure. An in situ bubble-template mechanism has been proposed for the possible formation of the hollow structure. The spherelike assemblies of these H2(H2O)Nb2O6 nanoparticles have been transformed into their corresponding pseudohexagonal phase Nb2O5 through a moderate annealing dehydration process without destroying the hierarchical structure. Optical properties of the as-prepared hollow spheres were investigated. It is exciting that the absorption edge of the hollow Nb2O5 microspheres shifts about 18 nm to the violet compared with bulk powders in the UV/vis spectra, indicating its superior optical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 μm diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e.g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past few years, remarkable progress has been made in unveiling novel and unique optical properties of strongly coupled plasmonic nanostructures. However, application of such plasmonic nanostructures in biomedicine remains challenging due to the lack of facile and robust assembly methods for producing stable nanostructures. Previous attempts to achieve plasmonic nano-assemblies using molecular ligands were limited due to the lack of flexibility that could be exercised in forming them. Here, we report the utilization of tailor-made hyperbranched polymers (HBP) as linkers to assemble gold nanoparticles (NPs) into nano-assemblies. The ease and flexibility in tuning the particle size and number of branch ends of a HBP makes it an ideal candidate as a linker, as opposed to DNA, small organic molecules and linear or dendrimeric polymers. We report a strong correlation of polymer (HBP) concentration with the size of the hybrid nano-assemblies and “hot-spot” density. We have shown that such solutions of stable HBP-gold nano-assemblies can be barcoded with various Raman tags to provide improved surface-enhanced Raman scattering (SERS) compared with non-aggregated NP systems. These Raman barcoded hybrid nano-assemblies, with further optimization of NP shape, size and “hot-spot” density, may find application as diagnostic tools in nanomedicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gelatin-methacrylamide (gelMA) hydrogels are shown to support chondrocyte viability and differentiation and give wide ranging mechanical properties depending on several cross-linking parameters. Polymer concentration, UV exposure time, and thermal gelation prior to UV exposure allow for control over hydrogel stiffness and swelling properties. GelMA solutions have a low viscosity at 37 °C, which is incompatible with most biofabrication approaches. However, incorporation of hyaluronic acid (HA) and/or co-deposition with thermoplastics allows gelMA to be used in biofabrication processes. These attributes may allow engineered constructs to match the natural functional variations in cartilage mechanical and geometrical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmonic gold nano-assemblies that self-assemble with the aid of linking molecules or polymers have the potential to yield controlled hierarchies of morphologies and consequently result in materials with tailored optical (e.g. localized surface plasmon resonances (LSPR)) and spectroscopic properties (e.g. surface enhanced Raman scattering (SERS)). Molecular linkers that are structurally well-defined are promising for forming hybrid nano-assemblies which are stable in aqueous solution and are increasingly finding application in nanomedicine. Despite much ongoing research in this field, the precise role of molecular linkers in governing the morphology and properties of the hybrid nano-assemblies remains unclear. Previously we have demonstrated that branched linkers, such as hyperbranched polymers, with specific anchoring end groups can be successfully employed to form assemblies of gold NPs demonstrating near-infrared SPRs and intense SERS scattering. We herein introduce a tailored polymer as a versatile molecular linker, capable of manipulating nano-assembly morphologies and hot-spot density. In addition, this report explores the role of the polymeric linker architecture, specifically the degree of branching of the tailored polymer in determining the formation, morphology and properties of the hybrid nano-assemblies. The degree of branching of the linker polymer, in addition to the concentration and number of anchoring groups, is observed to strongly influence the self-assembly process. The assembly morphology shifts primarily from 1D-like chains to 2D plates and finally to 3D-like globular structures, with increase in degree of branching. Insights have been gained into how the morphology influences the SERS performance of these nano-assemblies with respect to hot-spot density. These findings supplement the understanding of the morphology determining nano-assembly formation and pave the way for the possible application of these nano-assemblies as SERS bio-sensors for medical diagnostics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diketopyrrolopyrrole-based copolymers PDPP-BBT and TDPP-BBT were synthesized and used as donor for bulk heterojunction photovoltaic devices. The photophysical properties of these polymers showed absorption in the range 500-600 nm with a maximum peak around 563 nm, while TDPP-BBT showed broadband absorption in the range 620 - 800 nm with a peak around 656 nm. The power conversion efficiencies (PCE) of the polymer solar cells based on these copolymers and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) were 0.68% (as cast PDPP-BBT:PCBM), 1.51% (annealed PDPP-BBT:PCBM), 1.57% (as cast TDPPBBT: PCBM), and 2.78% (annealed TDPP-BBT:PCBM), under illumination of AM 1.5 (100 mW/cm2). The higher PCE for TDPP-BBT-based polymer solar cells has been attributed to the low band gap of this copolymer as compared to PDPP-BBT, which increases the numbers of photogenerated excitons and corresponding photocurrent of the device. These results indicate that PDPP-BBT and TDPP-BBT act as excellent electron donors for bulk heterojunction devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fe-doped tungsten oxide thin films with different concentrations (0 to 2.6 at%) were synthesized on glass and alumina substrates at room temperature using DC reactive sputtering and subsequently annealed at 300oC for 1 hour in air. The alumina substrate has pre-printed interdigitated Pt-electrodes for gas sensing measurements. The effects of Fe-doping on the film structure and morphology, electronic and optical properties for gas sensing were investigated. The grain size of the different films on the alumina and Pt regions of the substrate vary only slightly between 43-57 nm with median size of about 50 nm. Raman spectra showed that the integrated intensity of W=O to O–W–O bands increases with increasing Fe concentrations and this indicated an increase in the number of defects. From XPS the different concentrations of the Fe-doped films were 0.03 at%, 1.33 at% and 2.6 at%. All the films deposited on glass substrate have shown similar visible transmittance (about 70%) but the optical band gap of the pure film decreased form 3.30 eV to 3.15 eV after doping with 2.6 at% Fe. The Fe-doped WO3 film with the highest Fe concentration (2.6 at% Fe) has shown an enhanced gas sensing properties to NO2 at relatively lower operating temperature (150oC) and this can be attributed to the decrease in the optical band gap and an increase in the number of defects compared to the pure WO3 film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Films of CuInSe2 were deposited onto glass substrates by a hot wall deposition method using bulk CuInSe2 as a source material. All the deposited CuInSe2 films were found to be polycrystalline in nature exhibiting the chalcopyrite structure with the crystallite orientation along (101),(112),(103),(211),(220),(312) and (400) directions. The photocurrent was found to increase with increase in film thickness and also with increase of light intensity. Photocurrent spectra show a peak related to the band-to-band transition. The spectral response of CuInSe2 thin films was studied by allowing the radiation to pass through a series of interference filters in the wavelength range 700-1200 rim. Films of higher thickness exhibited higher photosensitivity while low thickness films exhibited moderate photosensitivity. CuInSe2-based Solar cells with different types of buffer layers such as US, Cdse, CuInSe2 and CdSe0.7Te0.3 were fabricated. The current and voltage were measured using an optical power meter and an electrometer respectively. The fabricated solar cells were illuminated using 100 mW/cm(2) white light under AM1 conditions. (C) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypyrrole (PPy) - multiwalled carbonnanotubes (MWCNT) nanocomposites with various MWCNT loading were prepared by in situ inversion emulsion polymerization technique. High loading of the nano filler were evaluated because of available inherent high interface area for charge separation in the nanocomposites. Solution processing of these conducting polymer nanocomposites is difficult because, most of them are insoluble in organic solvents. Device quality films of these composites were prepared by using pulsed laser deposition techniques (PLD). Comparative study of X-ray photoelectron spectroscopy (XPS) of bulk and film show that there is no chemical modification of polymer on ablation with laser. TEM images indicate PPy layer on MWCNT surface. SEM micrographs indicate that the MWCNT's are distributed throughout the film. It was observed that MWCNT in the composite held together by polymer matrix. Further more MWCNT diameter does not change from bulk to film indicating that the polymer layer remains intact during ablation. Even for very high loadings (80 wt.% of MWCNT's) of nanocomposites device quality films were fabricated, indicating laser ablation is a suitable technique for fabrication of device quality films. Conductivity of both bulk and films were measured using collinear four point probe setup. It was found that overall conductivity increases with increase in MWCNT loading. Comparative study of thickness with conductivity indicates that maximum conductivity was observed around 0.2 mu m. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a wafer scale fabrication method of a three-dimensional plasmonic metamaterial with strong chiroptical response in the visible region of the electromagnetic spectrum. The system was comprised of metallic nanoparticles arranged in a helical fashion, with high degree of flexibility over the choice of the underlying material, as well as their geometrical parameters. This resulted in exquisite control over the chiroptical properties, most importantly the spectral signature of the circular dichroism. In spite of the large variability in the arrangement, as well as the size and shape of the constituent nanoparticles, the average chiro-optical response of the material remained uniform across the wafer, thus confirming the suitability of this system as a large area chiral metamaterial. By simply heating the substrate for a few minutes, the geometrical properties of the nanoparticles could be altered, thus providing an additional handle towards tailoring the spectral response of this novel material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible poly(vinylidene chloride-co-vinyl chloride)/TiO2 nanocomposite films were fabricated and their dielectric properties were studied. The structural characterization of the composites was carried out using various spectroscopic and electron microscopic techniques. From the thermal analysis of the composites, an improvement in the thermal properties was observed for the composites, as compared to the neat polymer. An increase in the DC conductivity was also observed in the composites, which was due to the tunneling of charge carriers. Furthermore, it was observed that the optimal loading of titania in the matrix was required, above which the properties of the composites showed deterioration. The study of the dielectric properties of the composites supports their use in microelectronic devices as separator in charge storage devices and in transistors.