883 resultados para FORECASTING
Resumo:
Rapport de recherche présenté à la Faculté des arts et des sciences en vue de l'obtention du grade de Maîtrise en sciences économiques.
Resumo:
Production Planning and Control (PPC) systems have grown and changed because of the developments in planning tools and models as well as the use of computers and information systems in this area. Though so much is available in research journals, practice of PPC is lagging behind and does not use much from published research. The practices of PPC in SMEs lag behind because of many reasons, which need to be explored This research work deals with the effect of identified variables such as forecasting, planning and control methods adopted, demographics of the key person, standardization practices followed, effect of training, learning and IT usage on firm performance. A model and framework has been developed based on literature. Empirical testing of the model has been done after collecting data using a questionnaire schedule administered among the selected respondents from Small and Medium Enterprises (SMEs) in India. Final data included 382 responses. Hypotheses linking SME performance with the use of forecasting, planning and controlling were formed and tested. Exploratory factor analysis was used for data reduction and for identifying the factor structure. High and low performing firms were classified using a Logistic Regression model. A confirmatory factor analysis was used to study the structural relationship between firm performance and dependent variables.
Resumo:
Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries
Resumo:
Global temperature variations between 1861 and 1984 are forecast usingsregularization networks, multilayer perceptrons and linearsautoregression. The regularization network, optimized by stochasticsgradient descent associated with colored noise, gives the bestsforecasts. For all the models, prediction errors noticeably increasesafter 1965. These results are consistent with the hypothesis that thesclimate dynamics is characterized by low-dimensional chaos and thatsthe it may have changed at some point after 1965, which is alsosconsistent with the recent idea of climate change.s
Resumo:
Planners in public and private institutions would like coherent forecasts of the components of age-specic mortality, such as causes of death. This has been di cult to achieve because the relative values of the forecast components often fail to behave in a way that is coherent with historical experience. In addition, when the group forecasts are combined the result is often incompatible with an all-groups forecast. It has been shown that cause-specic mortality forecasts are pessimistic when compared with all-cause forecasts (Wilmoth, 1995). This paper abandons the conventional approach of using log mortality rates and forecasts the density of deaths in the life table. Since these values obey a unit sum constraint for both conventional single-decrement life tables (only one absorbing state) and multiple-decrement tables (more than one absorbing state), they are intrinsically relative rather than absolute values across decrements as well as ages. Using the methods of Compositional Data Analysis pioneered by Aitchison (1986), death densities are transformed into the real space so that the full range of multivariate statistics can be applied, then back-transformed to positive values so that the unit sum constraint is honoured. The structure of the best-known, single-decrement mortality-rate forecasting model, devised by Lee and Carter (1992), is expressed in compositional form and the results from the two models are compared. The compositional model is extended to a multiple-decrement form and used to forecast mortality by cause of death for Japan
Resumo:
Este documento estima modelos lineales y no-lineales de corrección de errores para los precios spot de cuatro tipos de café. En concordancia con las leyes económicas, se encuentra evidencia que cuando los precios están por encima de su nivel de equilibrio, retornan a éste mas lentamente que cuando están por debajo. Esto puede reflejar el hecho que, en el corto plazo, para los países productores de café es mas fácil restringir la oferta para incrementar precios, que incrementarla para reducirlos. Además, se encuentra evidencia que el ajuste es más rápido cuando las desviaciones del equilibrio son mayores. Los pronósticos que se obtienen a partir de los modelos de corrección de errores no lineales y asimétricos considerados en el trabajo, ofrecen una leve mejoría cuando se comparan con los pronósticos que resultan de un modelo de paseo aleatorio.
Resumo:
In this paper we use the most representative models that exist in the literature on term structure of interest rates. In particular, we explore affine one factor models and polynomial-type approximations such as Nelson and Siegel. Our empirical application considers monthly data of USA and Colombia for estimation and forecasting. We find that affine models do not provide adequate performance either in-sample or out-of-sample. On the contrary, parsimonious models such as Nelson and Siegel have adequate results in-sample, however out-of-sample they are not able to systematically improve upon random walk base forecast.