912 resultados para FLIES DIPTERA TEPHRITIDAE


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we diagnose the genus Sabroskya Schlinger, 1960 and describe Sabroskya schlingeri sp. n. from Malawi. We also provide dichotomous keys to species of Sabroskya and to world genera of the subfamily Acrocerinae, both extant and extinct.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aspects of phlebotomine behavior were investigated in the city of Campo Grande, Mato Grosso do Sul state. The insects were captured weekly during December 2003 to November 2005, with Centers for Disease Control light traps at seven different sites including forests and residential areas. In total, 11,024 specimens (7,805 males and 3,219 females) were collected, from which 9,963 (90.38%) were identified as Lutzomyia longipalpis, the proven vector of American visceral leishmaniasis agent. The remaining 9.62% comprised 21 species. L. longipalpis was the most frequent species in all sampled sites, and the first in the ranking of standardized species abundance index. In residential areas this species clearly predominated in the peridomicile (90.96%), in contrast to the intradomicile (9.04%); in animal shelters, it was more numerous in hen houses and prevailed at ground level, inside, and at forest edge around the residences; this aspect is worrying because this insect may remain sheltered in forested environments during the use of insecticides in homes. In the forest environment, other probable or proven vector of cutaneous leishmaniasis agents were also captured such as Lutzomyia whitmani (=Nyssomyia whitmani, sensu Galati), Lutzomyia antunesi (=Nyssomyia antunesi, sensu Galati), and Lutzomyia flaviscutellata (=Bichromomyia flaviscutellata, sensu Galati).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Whether phytophagous insects can speciate in sympatry when they shift and adapt to new host plants is a controversial question. One essential requirement for sympatric speciation is that disruptive selection outweighs gene flow between insect populations using different host plants. Empirical support for host-related selection (i.e., fitness trade-offs) is scant, however. Here, we test for host-dependent selection acting on apple (Malus pumila)- and hawthorn (Crataegus spp.)-infesting races of Rhagoletis pomonella (Diptera: Tephritidae). In particular, we examine whether the earlier fruiting phenology of apple trees favors pupae in deeper states of diapause (or with slower metabolisms/development rates) in the apple fly race. By experimentally lengthening the time period preceding winter, we exposed hawthorn race pupae to environmental conditions typically faced by apple flies. This exposure induced a significant genetic response at six allozyme loci in surviving hawthorn fly adults toward allele frequencies found in the apple race. The sensitivity of hawthorn fly pupae to extended periods of warm weather therefore selects against hawthorn flies that infest apples and helps to maintain the genetic integrity of the apple race by counteracting gene flow from sympatric hawthorn populations. Our findings confirm that postzygotic reproductive isolation can evolve as a pleiotropic consequence of host-associated adaptation, a central tenet of nonallopatric speciation. They also suggest that one reason for the paucity of reported fitness trade-offs is a failure to consider adequately costs associated with coordinating an insect’s life cycle with the phenology of its host plant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Issued as an appendix to Mitth. Schweiz. Entom Gesllschaft, Bd. VIII.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For purposes of interstate and international fruit trade, it is necessary to demonstrate that in areas in which fruit fly species have not previously established permanent populations, but which are subject to introductions of fruit flies from outside the area, the introduced population once detected, has not become established. In this paper, we apply methodology suggested mainly by Carey (1991, 1995) to introductions of Mediterranean fruit fly (Medfly), Ceratitis capitata Weid., and Queensland fruit fly (QFF) Bactrocera tryoni Froggatt (Diptera: Tephritidae) to South Australia, a state in which these species do not occur naturally and in which introductions, once detected, are actively treated. By analysing historical data associated with fruit fly outbreaks in South Australia, we demonstrate that: (i) fruit flies occur seasonally, as would occur in established populations, except there is no evidence of the critical spring generation of either species; (ii) there is no evidence of increasing frequency of outbreaks, trapped flies or larval occurrences over 29 years; (iii) there is no evidence of decreasing time between catches of adult flies as the years progress; (iv) there is no decrease in the mean number of years between outbreaks in the same locations; (v) there is no statistically significant recurrence of outbreaks in the same locations in successive years; (vi) there is no evidence of spread of outbreaks outwards from a central location; (vii) the likelihood of outbreaks in a city or town is related to the size of the human population; (viii) introduction pathways by road from Western Australia (for Medfly) and eastern Australia (for QFF) are shown to exist and to illegally or accidentally carry considerable amounts of fruit into South Australia; and (ix) there was no association between the numbers of either Queensland fruit fly or Medfly and the spatial pattern of either loquat or cumquat trees as sources of larval food in spring. This analysis supports the hypothesis that most fruit fly outbreaks in South Australia have been the result of separate introductions of infested fruit by vehicular traffic and that most of the resultant fly outbreaks were detected and died out within a few weeks of the application of eradication procedures. An alternative hypothesis, that populations of fruit flies are established in South Australia at below detectable levels, is impossible to disprove with conventional technology, but the likelihood of it being true is minimised by our analysis. Both hypotheses could be tested soon with newly developed genetic techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Queensland fruit fly, Bactrocera (Dacus) tryoni (QFF) is arguably the most costly horticultural insect pest in Australia. Despite this, no model is available to describe its population dynamics and aid in its management. This paper describes a cohort-based model of the population dynamics of the Queensland fruit fly. The model is primarily driven by weather variables, and so can be used at any location where appropriate meteorological data are available. In the model, the life cycle is divided into a number of discreet stages to allow physiological processes to be defined as accurately as possible. Eggs develop and hatch into larvae, which develop into pupae, which emerge as either teneral females or males. Both females and males can enter reproductive and over-wintering life stages, and there is a trapped male life stage to allow model predictions to be compared with trap catch data. All development rates are temperature-dependent. Daily mortality rates are temperature-dependent, but may also be influenced by moisture, density of larvae in fruit, fruit suitability, and age. Eggs, larvae and pupae all have constant establishment mortalities, causing a defined proportion of individuals to die upon entering that life stage. Transfer from one immature stage to the next is based on physiological age. In the adult life stages, transfer between stages may require additional and/or alternative functions. Maximum fecundity is 1400 eggs per female per day, and maximum daily oviposition rate is 80 eggs/female per day. The actual number of eggs laid by a female on any given day is restricted by temperature, density of larva in fruit, suitability of fruit for oviposition, and female activity. Activity of reproductive females and males, which affects reproduction and trapping, decreases with rainfall. Trapping of reproductive males is determined by activity, temperature and the proportion of males in the active population. Limitations of the model are discussed. Despite these, the model provides a useful agreement with trap catch data, and allows key areas for future research to be identified. These critical gaps in the current state of knowledge exist despite over 50 years of research on this key pest. By explicitly attempting to model the population dynamics of this pest we have clearly identified the research areas that must be addressed before progress can be made in developing the model into an operational tool for the management of Queensland fruit fly. (C) 2003 Published by Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fluorescence spectrophotometry can reliably detect levels of the pteridine 6-biopterin in the heads of individual Drosophila serrata Malloch 1927. Pteridine content in both laboratory and field captured flies is typically a level of magnitude higher than the minimally detectable level (mean(lab)=0.54 units, mean(field)=0.44 units, minimum detectable level=0.01 units) and can be used to predict individual age in laboratory populations with high certainty (r(2)=57%). Laboratory studies of individuals of known age ( from 1 to 48 days old) indicate that while pteridine level increases linearly with age, they also increase in a linear manner with rearing temperature and ambient light levels, but are independent of sex. As expected, the longevity of laboratory-reared males ( at least 48 days) is higher than the range of predicted ages of wild-caught males based on individual pteridine levels (40 days). However, the predictive equation based on pteridine level alone suggested that a number of wild-caught males were less than 0 days old, and the 95% confidence for these predictions based on the inverse regression broad. The age of the oldest wild-caught male is to fall within the range of 2 to 50 days. The effects of temperature and light intensity determined in laboratory study (effect sizes omega(2)=14.3 and respectively) suggests that the calibration of the prediction equation for field populations would significantly improved when combined with fine scaled studies of habitat temperature and light conditions. ability to determine relative age in individual wild-caught D. serrata presents great opportunities for a variety evolutionary studies on the dynamics of populations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a suscetibilidade de genótipos de videira à drosófila‑da‑asa‑ manchada, Drosophila suzukii (Diptera: Drosophilidae), em bagas de uva intactas e em bagas infestadas após a ocorrência de puncturas, causadas pela oviposição da mosca‑das‑frutas sul‑americana [Anastrepha fraterculus(Diptera: Tephritidae)] ou por danos mecânicos (alfinetes). Os experimentos foram realizados em laboratório, a 22±1°C, umidade relativa de 65±10% e fotófase de 12 horas. A suscetibilidade foi avaliada para 18 genótipos de videira, em bagas intactas submetidas às fêmeas de D. suzukii. O potencial de interação foi verificado em bagas de uva 'Italia', cuja epiderme foi danificada por puncturas de A. fraterculusou por alfinete, em comparação a frutos de morango 'Albion'. As cultivares de Vitis labrusca 'Niagara Rosada' e 'Concord' não foram infestadas por D. suzukii, e cinco dos oito genótipos que foram infestados são cultivares melhoradas. A infestação de D. suzukii em bagas de uva 'Italia' com danos mecânicos, feitos com um alfinete ou pela oviposição de A. fraterculus, foi semelhante à de bagas íntegras. Há baixa adequação hospedeira de videiras a D. suzukii, mesmo com a presença de danos. As cultivares 'Benitaka', 'BRS Vitória' e 'BRS Morena' são as mais suscetíveis a D. suzukii.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a suscetibilidade de genótipos de videira à drosófila?da?asamanchada, Drosophila suzukii (Diptera: Drosophilidae), em bagas de uva intactas e em bagas infestadas após a ocorrência de puncturas, causadas pela oviposição da mosca?das?frutas sul?americana [Anastrepha fraterculus (Diptera: Tephritidae)] ou por danos mecânicos (alfinetes). Os experimentos foram realizados em laboratório, a 22±1°C, umidade relativa de 65±10% e fotófase de 12 horas. A suscetibilidade foi avaliada para 18 genótipos de videira, em bagas intactas submetidas às fêmeas de D. suzukii. O potencial de interação foi verificado em bagas de uva 'Italia', cuja epiderme foi danificada por puncturas de A. fraterculus ou por alfinete, em comparação a frutos de morango 'Albion'. As cultivares de Vitis labrusca 'Niagara Rosada' e 'Concord' não foram infestadas por D. suzukii, e cinco dos oito genótipos que foram infestados são cultivares melhoradas. A infestação de D. suzukii em bagas de uva 'Italia' com danos mecânicos, feitos com um alfinete ou pela oviposição de A. fraterculus, foi semelhante à de bagas íntegras. Há baixa adequação hospedeira de videiras a D. suzukii, mesmo com a presença de danos. As cultivares 'Benitaka', 'BRS Vitória' e 'BRS Morena' são as mais suscetíveis a D. suzukii.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chromolaena odorata (L.) King and Robinson (Asteraceae) is a major weed in Timor Leste, affecting grazing lands and subsistence farms, reducing productivity and food security. It was the focus of a biocontrol project funded by the Australian Government from 2005-2009. During this period, the gall fly Cecidochares connexa (Macquart) (Diptera: Tephritidae) was introduced from Papua New Guinea and Indonesia, where it is widespread. From these initial releases, the gall fly established at seven sites and was subsequently re-distributed to most areas in Timor Leste where chromolaena was a problem. It established at most of the release sites that were revisited and caused a visible reduction in plant density and height. Overall, control of chromolaena by the gall fly in Timor Leste is limited by the severe dry season and the widespread use of fire in clearing lands for agriculture, both of which reduce the ability of gall fly populations to persist at damaging levels. Thus additional agents that can tolerate prolonged dry periods are required to increase the level of control of chromolaena.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chromolaena odorata (L.) King and Robinson (Asteraceae) is a significant agricultural weed in Papua New Guinea (PNG), affecting plantations, food gardens and grazing lands. It was the focus of a collaborative biocontrol program funded by the Australian Government between 1998 and 2007. Chromolaena was recorded at 680 sites in 13 provinces of PNG through surveys, field releases of biocontrol agents and feedback from public awareness programs. Three biocontrol agents, the moth Pareuchaetes pseudoinsulata Rego Barros (Lepidoptera: Arctiidae), the stemgalling fly Cecidochares connexa (Macquart) (Diptera: Tephritidae) and the leaf mining fly Calycomyza eupatorivora Spencer (Diptera: Agromyzidae), were introduced to control chromolaena. Cecidochares connexa was found to be the most effective of the agents introduced as it quickly established at over 300 sites where it was released and spread up to 100km in five years from some sites. Experimental field plots established to determine the impact of the agents on chromolaena, showed that the size of chromolaena infestations decreased with the presence of C. connexa. A survey was conducted to quantify the social and economic benefits of biocontrol of chromolaena to landholders. Chromolaena is considered to be under substantial/significant control in nine provinces in PNG, with about 50% of respondents stating that there is less than 50% of chromolaena remaining following the release of the gall fly. This has resulted in landholders spending less time clearing chromolaena and the re-establishment of small-scale subsistence farms and the regeneration of natural vegetation. Crop yield and income generated from the sale of agricultural produce have increased by at least 50% since chromolaena was brought under biocontrol. It is anticipated that the gall fly will continue to spread and control chromolaena in areas where it has not yet reached, thereby further reducing the impact of the weed in PNG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since 2004 several studies have been carried out in order to identify the main insect species that usually inhabiting the olive ecosystem. The field trials have taken place in two olive groves, one situated in Olhão and the other one in Loulé, both in Algarve and also under Integrated Pest Management (IPM). The sampling techniques used differ according to their purpose (sticky traps, pheromone traps, pitfall traps and samples of aerial parts of the trees such as inflorescences, leaves, fruits and branches). Results showed that the main insect pests of olive tree in southern Portugal were the olive fruit fly Bactrocera oleae Gmelin (Diptera: Tephritidae) and the olive moth Prays oleae Bernard (Lepidoptera: Hyponeumetidae). Other insect pests were also found in our olive groves namely the olive psyllid Euphyllura olivina Costa (Homoptera: Psyllidae), the olive dark beetle Phloeotribus scarabaeoides Bernard (Coleoptera: Curculionidae), the mediterranean black scale Saissetia oleae (Olivier) (Homoptera: Coccidae) and the olive thrip Liothripes oleae Costa (Thysanoptera: Phlaeothripidae). Concerning the auxiliary insects that were found in our olives groves they belong to the following orders and families: Diptera (Syrphidae), Coleoptera (Carabidae, Coccinelidae and Staphylinidae), Hemiptera (Anthocoridae and Miridae), Neuroptera (Chrysopidae) and Hymenoptera (Braconidae, Encyrtidae, Eulophidae, Formicidae and Trichogrammatidae).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)