900 resultados para FIELD METABOLIC-RATES
Resumo:
Body size is a key determinant of metabolic rate, but logistical constraints have led to a paucity of energetics measurements from large water-breathing animals. As a result, estimating energy requirements of large fish generally relies on extrapolation of metabolic rate from individuals of lower body mass using allometric relationships that are notoriously variable. Swim-tunnel respirometry is the ‘gold standard’ for measuring active metabolic rates in water-breathing animals, yet previous data are entirely derived from body masses <10 kg – at least one order of magnitude lower than the body masses of many top-order marine predators. Here, we describe the design and testing of a new method for measuring metabolic rates of large water-breathing animals: a c. 26 000 L seagoing ‘mega-flume’ swim-tunnel respirometer. We measured the swimming metabolic rate of a 2·1-m, 36-kg zebra shark Stegostoma fasciatum within this new mega-flume and compared the results to data we collected from other S. fasciatum (3·8–47·7 kg body mass) swimming in static respirometers and previously published measurements of active metabolic rate measurements from other shark species. The mega-flume performed well during initial tests, with intra- and interspecific comparisons suggesting accurate metabolic rate measurements can be obtained with this new tool. Inclusion of our data showed that the scaling exponent of active metabolic rate with mass for sharks ranging from 0·13 to 47·7 kg was 0·79; a similar value to previous estimates for resting metabolic rates in smaller fishes. We describe the operation and usefulness of this new method in the context of our current uncertainties surrounding energy requirements of large water-breathing animals. We also highlight the sensitivity of mass-extrapolated energetic estimates in large aquatic animals and discuss the consequences for predicting ecosystem impacts such as trophic cascades.
Resumo:
Body size is a key determinant of metabolic rate, but logistical constraints have led to a paucity of energetics measurements from large water-breathing animals. As a result, estimating energy requirements of large fish generally relies on extrapolation of metabolic rate from individuals of lower body mass using allometric relationships that are notoriously variable. Swim-tunnel respirometry is the ‘gold standard’ for measuring active metabolic rates in water-breathing animals, yet previous data are entirely derived from body masses <10 kg – at least one order of magnitude lower than the body masses of many top-order marine predators. Here, we describe the design and testing of a new method for measuring metabolic rates of large water-breathing animals: a c. 26 000 L seagoing ‘mega-flume’ swim-tunnel respirometer. We measured the swimming metabolic rate of a 2·1-m, 36-kg zebra shark Stegostoma fasciatum within this new mega-flume and compared the results to data we collected from other S. fasciatum (3·8–47·7 kg body mass) swimming in static respirometers and previously published measurements of active metabolic rate measurements from other shark species. The mega-flume performed well during initial tests, with intra- and interspecific comparisons suggesting accurate metabolic rate measurements can be obtained with this new tool. Inclusion of our data showed that the scaling exponent of active metabolic rate with mass for sharks ranging from 0·13 to 47·7 kg was 0·79; a similar value to previous estimates for resting metabolic rates in smaller fishes. We describe the operation and usefulness of this new method in the context of our current uncertainties surrounding energy requirements of large water-breathing animals. We also highlight the sensitivity of mass-extrapolated energetic estimates in large aquatic animals and discuss the consequences for predicting ecosystem impacts such as trophic cascades.
Resumo:
This paper describes a new 2D model for the photospheric evolution of the magnetic carpet. It is the first in a series of papers working towards constructing a realistic 3D non-potential model for the interaction of small-scale solar magnetic fields. In the model, the basic evolution of the magnetic elements is governed by a supergranular flow profile. In addition, magnetic elements may evolve through the processes of emergence, cancellation, coalescence and fragmentation. Model parameters for the emergence of bipoles are based upon the results of observational studies. Using this model, several simulations are considered, where the range of flux with which bipoles may emerge is varied. In all cases the model quickly reaches a steady state where the rates of emergence and cancellation balance. Analysis of the resulting magnetic field shows that we reproduce observed quantities such as the flux distribution, mean field, cancellation rates, photospheric recycle time and a magnetic network. As expected, the simulation matches observations more closely when a larger, and consequently more realistic, range of emerging flux values is allowed (4×1016 - 1019 Mx). The model best reproduces the current observed properties of the magnetic carpet when we take the minimum absolute flux for emerging bipoles to be 4×1016 Mx. In future, this 2D model will be used as an evolving photospheric boundary condition for 3D non-potential modeling.
Resumo:
Em invertebrados eurialinos, a exposição a metais pode induzir distúrbios respiratórios, iônicos e osmóticos, bem como estresse oxidativo. Diversos estudos sobre o efeito combinado da salinidade da água e a exposição a metais em invertebrados estuarinos estão relatados na literatura, porém a maioria destes estudos estão focados em apenas alguns metais como Cd, Cu, Pb e Zn. Entretanto, poucos estudos avaliaram as respostas bioquímicas e fisiológicas de invertebrados eurialinos à exposição ao Ni em diferentes salinidades. No presente estudo, o caranguejo estuarino Neohelice granulata foi mantido sob condições controle (sem adição de Ni na água) ou exposto (96 h) a concentrações subletais de Ni (100 e 1000 µg/L) em duas salinidades (2 e 30). Após exposição, o consumo de oxigênio corporal foi medido e amostras de tecidos (hemolinfa, hepatopâncreas, músculo, e brânquias anteriores e posteriores) foram coletadas para análises posteriores. A concentração osmótica e a composição iônica (Na+ , Cl- , Ca2+, Mg2+ e K+ ) foram determinadas nas amostras de hemolinfa. A atividade da lactato desidrogenase (LDH) foi medida na hemolinfa, hepatopâncreas e músculo, enquanto a peroxidação lipídica (LPO) foi analisada no hepatopâncreas, músculo e brânquias (anteriores e posteriores). Os caranguejos controle não apresentaram diferença na concentração osmótica em função da salinidade, porém aqueles aclimatados à salinidade 2 apresentaram menores concentrações hemolinfáticas de Na+ , K + e Mg2+, bem como maiores níveis de LPO nas brânquias (anteriores e posteriores) e hepatopâncreas do que aqueles aclimatados à salinidade 30. O consumo de oxigênio corporal e a atividade tecidual da LDH foram semelhantes nos caranguejos controles aclimatados a 2 e 30. Estes resultados indicam que, após duas semanas de manutenção em laboratório, N. granulata apresenta ajustes fisiológicos da concentração osmótica (2‰: hiper-regulação; 30‰: hipo-regulação), composição iônica hemolinfática e taxas 4 metabólicas (aeróbica e anaeróbica) em função da salinidade, com conseqüente maior dano oxidativo em lipídios durante a hiper-regulação em baixa salinidade. Quanto à exposição ao Ni, houve aumento do consumo de oxigênio corporal, da atividade da LDH hemolinfática e da concentração hemolinfática de K+ na salinidade 2. Na salinidade 30 foi observado um aumento da atividade da LDH hemolinfática, da concentração osmótica e de Cl- hemolinfática, bem como uma diminuição das concentrações hemolinfáticas de K+ e Mg2+. Nos caranguejos aclimatados à salinidade 2, os efeitos do Ni parecem estar associados a distúrbios metabólicos (aeróbico e anaeróbico), enquanto distúrbios osmóticos e ionoregulatórios foram mais evidentes nos caranguejos aclimatados e expostos ao Ni na salinidade 30.
Resumo:
In natural environments, bacterial physiology is frequently characterized by slow metabolic rates and complex cellular heterogeneities. The opportunistic pathogen Pseudomonas aeruginosa provides one such example; P. aeruginosa forms untreatable chronic biofilm infections of the cystic fibrosis lung, where oxygen limitation can lead to states of metabolic dormancy. To better understand the biology of these states, in vitro experiments must be adapted to better recapitulate natural settings. However, low rates of protein turnover and cellular or phenotypic complexity make these systems difficult to study using established methods. Here we adapt the bioorthogonal noncanonical amino acid tagging (BONCAT) method for time- and cell-selective proteomic analysis to the study of P. aeruginosa. Analysis of proteins synthesized in an anoxic dormancy state led to the discovery of a new type of transcriptional regulator which we designated SutA. We performed detailed analyses of SutA’s role in transcription under slow growth states and we elucidated the structural basis for its regulatory behavior. Additionally, we used cell-selective targeting of BONCAT labeling to measure the dynamic proteomic response of an antibiotic-tolerant biofilm subpopulation. Overall this work shows the utility of selective proteomics as applied to bacterial physiology and describes the broad biological insight obtained from that application.
Resumo:
The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.
Resumo:
A balance between excitatory and inhibitory synaptic currents is thought to be important for several aspects of information processing in cortical neurons in vivo, including gain control, bandwidth and receptive field structure. These factors will affect the firing rate of cortical neurons and their reliability, with consequences for their information coding and energy consumption. Yet how balanced synaptic currents contribute to the coding efficiency and energy efficiency of cortical neurons remains unclear. We used single compartment computational models with stochastic voltage-gated ion channels to determine whether synaptic regimes that produce balanced excitatory and inhibitory currents have specific advantages over other input regimes. Specifically, we compared models with only excitatory synaptic inputs to those with equal excitatory and inhibitory conductances, and stronger inhibitory than excitatory conductances (i.e. approximately balanced synaptic currents). Using these models, we show that balanced synaptic currents evoke fewer spikes per second than excitatory inputs alone or equal excitatory and inhibitory conductances. However, spikes evoked by balanced synaptic inputs are more informative (bits/spike), so that spike trains evoked by all three regimes have similar information rates (bits/s). Consequently, because spikes dominate the energy consumption of our computational models, approximately balanced synaptic currents are also more energy efficient than other synaptic regimes. Thus, by producing fewer, more informative spikes approximately balanced synaptic currents in cortical neurons can promote both coding efficiency and energy efficiency.
Resumo:
In the early 20th century, a blue mussel species from the Mediterranean invaded the California coast and subsequently out-competed the native species south of Monterey Bay. Like other invasive species, Mytilus galloprovincialis has physiological traits that make it successful in habitats formerly occupied by the native M. trossulus, namely its adaptation to warm sea surface temperatures. This study looks at the current genotype distributions and enzymatic activities of field-acclimatized mussels within the hybrid zone where the species co-occur as well as mussels that have been acclimated for four weeks to different temperature and salinity conditions. In the field-acclimatized and laboratory-acclimated mussels, the native species exhibited significantly higher enzyme rates, which may reflect an evolutionary adaptation to compensate to low habitat temperatures. Indeed, the results of the laboratory acclimation indicate that these differences are genetically based. Whether an acclimation capacity exists may require even longer-term acclimation to different temperatures. Current findings suggest that the further spread of the invasive species is likely to be governed in large measure by the potentially counteracting effects of rising temperatures, which would favor the northerly spread of M. galloprovincialis, and increased winter precipitation, which would favor the persistence of M. trossulus. However, the success of M. galloprovincialis during acclimation to ‘dilute’ salinity (25 ppt) suggests that the invasive species can tolerate a greater salinity range than previously thought. Thus, further investigation is needed to build a comprehensive predictive model of the movement of M. galloprovincialis and the hybrid zone along the California coast.
Resumo:
Cells have evolved oscillators with different frequencies to coordinate periodic processes. Here we studied the interaction of two oscillators, the cell division cycle (CDC) and the yeast metabolic cycle (YMC), in budding yeast. Previous work suggested that the CDC and YMC interact to separate high oxygen consumption (HOC) from DNA replication to prevent genetic damage. To test this hypothesis, we grew diverse strains in chemostat and measured DNA replication and oxygen consumption with high temporal resolution at different growth rates. Our data showed that HOC is not strictly separated from DNA replication; rather, cell cycle Start is coupled with the initiation of HOC and catabolism of storage carbohydrates. The logic of this YMC-CDC coupling may be to ensure that DNA replication and cell division occur only when sufficient cellular energy reserves have accumulated. Our results also uncovered a quantitative relationship between CDC period and YMC period across different strains. More generally, our approach shows how studies in genetically diverse strains efficiently identify robust phenotypes and steer the experimentalist away from strain-specific idiosyncrasies.
Resumo:
© 2016 Burnetti et al. Cells have evolved oscillators with different frequencies to coordinate periodic processes. Here we studied the interaction of two oscillators, the cell division cycle (CDC) and the yeast metabolic cycle (YMC), in budding yeast. Previous work suggested that the CDC and YMC interact to separate high oxygen consumption (HOC) from DNA replication to prevent genetic damage. To test this hypothesis, we grew diverse strains in chemostat and measured DNA replication and oxygen consumption with high temporal resolution at different growth rates. Our data showed that HOC is not strictly separated from DNA replication; rather, cell cycle Start is coupled with the initiation of HOC and catabolism of storage carbohydrates. The logic of this YMC-CDC coupling may be to ensure that DNA replication and cell division occur only when sufficient cellular energy reserves have accumulated. Our results also uncovered a quantitative relationship between CDC period and YMC period across different strains. More generally, our approach shows how studies in genetically diverse strains efficiently identify robust phenotypes and steer the experimentalist away from strain-specific idiosyncrasies.