964 resultados para FACTOR RECEPTOR-1
Resumo:
Cannabinoid receptor 1 (CB(1) receptor) controls several neuronal functions, including neurotransmitter release, synaptic plasticity, gene expression and neuronal viability. Downregulation of CB(1) expression in the basal ganglia of patients with Huntington's disease (HD) and animal models represents one of the earliest molecular events induced by mutant huntingtin (mHtt). This early disruption of neuronal CB(1) signaling is thought to contribute to HD symptoms and neurodegeneration. Here we determined whether CB(1) downregulation measured in patients with HD and mouse models was ubiquitous or restricted to specific striatal neuronal subpopulations. Using unbiased semi-quantitative immunohistochemistry, we confirmed previous studies showing that CB(1) expression is downregulated in medium spiny neurons of the indirect pathway, and found that CB(1) is also downregulated in neuropeptide Y (NPY)/neuronal nitric oxide synthase (nNOS)-expressing interneurons while remaining unchanged in parvalbumin- and calretinin-expressing interneurons. CB(1) downregulation in striatal NPY/nNOS-expressing interneurons occurs in R6/2 mice, Hdh(Q150/Q150) mice and the caudate nucleus of patients with HD. In R6/2 mice, CB(1) downregulation in NPY/nNOS-expressing interneurons correlates with diffuse expression of mHtt in the soma. This downregulation also occludes the ability of cannabinoid agonists to activate the pro-survival signaling molecule cAMP response element-binding protein in NPY/nNOS-expressing interneurons. Loss of CB(1) signaling in NPY/nNOS-expressing interneurons could contribute to the impairment of basal ganglia functions linked to HD.
Resumo:
Natural Killer (NK) cells are innate immune cells that can eliminate malignant and foreign cells and that play an important role for the early control of viral and fungal infections. Further, they are important regulators of the adaptive and innate immune responses. During their development in the bone marrow (BM) NK cells undergo several maturation steps that directly establish an effector program. The transcriptional network that controls NK cell development and maturation is still incompletely understood. Based on earlier findings that NK cell numbers are reduced in the absence of the transcription factor T cell factor-1 (Tcf-1), my thesis has addressed the precise role of this transcription factor for NK cell development, maturation and function and whether Tcf-1 acts as a nuclear effector of the canonical Wnt signaling pathway to mediate its effects. It is shown that Tcf-1 is selectively required for the emergence of mature BM NK cells. Surprisingly, the emergence of BM NK cells depends on the repressor function of Tcf-1 and is independent of the Wnt pathway. In BM and peripheral NK cells Tcf-1 is found to suppress Granzyme B (GzmB) expression, a key cytotoxic effector molecule required to kill target cells. We provide evidence that GzmB over-expression in the absence of Tcf-1 results in accelerated spontaneous death of bone marrow NK cells and of cytokine stimulated peripheral NK cells. Moreover, Tcf-1 deficient NK cells show reduced target cell killing, which is due to enhanced GzmB-dependent NK cell death induced by the recognition of tumour target cells. Collectively, these data provide significant new insights into the transcriptional regulation of NK cell development and function and suggest a novel mechanism that protects NK cells from the deleterious effects of highly cytotoxic effector molecules. - Les cellules NK (de l'anglais Natural Killer) font partie du système immunitaire inné et sont capables d'éliminer à elles seules les cellules cancéreuses ou infectées. Ces cellules participent dans la régulation et la coordination des réponses innée et adaptative. Lors de leur développement dans la moelle osseuse, les cellules NK vont acquérir leurs fonctions effectrices, un processus contrôlé par des facteurs de transcription mais encore peu connu. Des précédentes travaux ont montré qu'une diminution du nombre de cellules NK corrélait avec l'absence du facteur de transcription Tcf-1 (T cell factor-1), suggérant un rôle important de Tcf-1 dans le développement de cellules NK. Cette thèse a pour but de mieux comprendre le rôle du facteur de transcription Tcf-1 lors du développement et la maturation des cellules NK, ainsi que son interaction avec la voie de signalisation Wnt. Nous avons montré que Tcf-1 est essentiel pour la transition des cellules immatures NK (iNK) à des cellules matures NK (mNK) dans la moelle osseuse, et cela de manière indépendamment de la voie de signalisation Wnt. De manière intéressante, nous avons observé qu'en absence du facteur de transcription Tcf-1, les cellules NK augmentaient l'expression de la protéine Granzyme B (GzmB), une protéine essentielle pour l'élimination des cellules cancéreuses ou infectées. Ceci a pour conséquence, une augmentation de la mort des cellules mNK dans la moelle osseuse ainsi qu'une diminution de leur fonction «tueuses». Ces résultats montrent pour la première fois, le rôle répresseur du facteur de transcription Tcf-1 dans l'expression de la protéine GzmB. L'ensemble de ces résultats apporte de nouveaux éléments concernant le rôle de Tcf-1 dans la régulation du développement et de la fonction des cellules NK et suggèrent un nouveau mécanisme cellulaire de protection contre les effets délétères d'une dérégulation de l'expression des molécules cytotoxique.
Resumo:
OBJECTIVE: Juvenile dermatomyositis (DM) is a systemic autoimmune disorder of unknown immunopathogenesis in which the immune system targets the microvasculature of skeletal muscles, skin, and other organs. The current mainstay of therapy is a steroid regimen in combination with other immunosuppressive treatments. To date, no validated markers for monitoring disease activity have been identified, which hampers personalized treatment. This study was undertaken to identify a panel of proteins specifically related to active disease in juvenile DM. METHODS: We performed a multiplex immunoassay for plasma levels of 45 proteins related to inflammation in 25 patients with juvenile DM in 4 clinically well-defined groups, as determined by clinical activity and treatment. We compared them to 14 age-matched healthy children and 8 age-matched children with nonautoimmune muscle disease. RESULTS: Cluster analysis of circulating proteins showed distinct profiles for juvenile DM patients and controls based on a group of 10 proteins. In addition to CXCL10, tumor necrosis factor receptor type II (TNFRII) and galectin 9 were significantly increased in active juvenile DM. The levels of these 3 proteins were tightly linked to active disease and correlated with clinical scores (as measured by the Childhood Myositis Assessment Scale and physician's global assessment of disease activity on a visual analog scale). CONCLUSION: Our findings indicate that CXCL10, TNFRII, and galectin 9 correspond to disease status in juvenile DM and thus could be helpful in monitoring disease activity and guiding treatment. Furthermore, they might provide new knowledge about the pathogenesis of this autoimmune disease.
Resumo:
Glucocorticoid-induced tumor necrosis factor receptor (GITR) is a member of the tumor necrosis factor receptor superfamily, is expressed in T lymphocytes, and exerts an anti-apoptotic function in these cells. We reported that GITR is also highly expressed in the skin, specifically in keratinocytes, and that it is under negative transcriptional control of p21(Cip1/WAF1), independently from the cell cycle. Although GITR expression is higher in p21-deficient keratinocytes and skin, it is down-modulated with differentiation and in response to UVB. The combined analysis of keratinocytes with increased GITR expression versus normal keratinocytes and skin of mice with a disruption of the GITR gene indicates that this protein protects keratinocytes from UVB-induced apoptosis both in vitro and in vivo.
Resumo:
The epidermal growth factor (EGF) receptor/ligand system stimulates multiple pathways of signal transduction, and is activated by various extracellular stimuli and inter-receptor crosstalk signaling. Aberrant activation of EGF receptor (EGFR) signaling is found in many tumor cells, and humanized neutralizing antibodies and synthetic small compounds against EGFR are in clinical use today. However, these drugs are known to cause a variety of skin toxicities such as inflammatory rash, skin dryness, and hair abnormalities. These side effects demonstrate the multiple EGFR-dependent homeostatic functions in human skin. The epidermis and hair follicles are self-renewing tissues, and keratinocyte stem cells are crucial for maintaining these homeostasis. A variety of molecules associated with the EGF receptor/ligand system are involved in epidermal homeostasis and hair follicle development, and the modulation of EGFR signaling impacts the behavior of keratinocyte stem cells. Understanding the roles of the EGF receptor/ligand system in skin homeostasis is an emerging issue in dermatology to improve the current therapy for skin disorders, and the EGFR inhibitor-associated skin toxicities. Besides, controlling of keratinocyte stem cells by modulating the EGF receptor/ligand system assures advances in regenerative medicine of the skin. We present an overview of the recent progress in the field of the EGF receptor/ligand system on skin homeostasis and regulation of keratinocyte stem cells.
Resumo:
Transforming growth factor beta (TGF-beta) is a pluripotent peptide hormone that regulates various cellular activities, including growth, differentiation, and extracellular matrix protein gene expression. We previously showed that TGF-beta induces the transcriptional activation domain (TAD) of CTF-1, the prototypic member of the CTF/NF-I family of transcription factors. This induction correlates with the proposed role of CTF/NF-I binding sites in collagen gene induction by TGF-beta. However, the mechanisms of TGF-beta signal transduction remain poorly understood. Here, we analyzed the role of free calcium signaling in the induction of CTF-1 transcriptional activity by TGF-beta. We found that TGF-beta stimulates calcium influx and mediates an increase of the cytoplasmic calcium concentration in NIH3T3 cells. TGF-beta induction of CTF-1 is inhibited in cells pretreated with thapsigargin, which depletes the endoplasmic reticulum calcium stores, thus further arguing for the potential relevance of calcium mobilization in TGF-beta action. Consistent with this possibility, expression of a constitutively active form of the calcium/calmodulin-dependent phosphatase calcineurin or of the calcium/calmodulin-dependent kinase IV (DeltaCaMKIV) specifically induces the CTF-1 TAD and the endogenous mouse CTF/NF-I proteins. Both calcineurin- and DeltaCaMKIV-mediated induction require the previously identified TGF-beta-responsive domain of CTF-1. The immunosuppressants cyclosporin A and FK506 abolish calcineurin-mediated induction of CTF-1 activity. However, TGF-beta still induces the CTF-1 TAD in cells treated with these compounds or in cells overexpressing both calcineurin and DeltaCaMKIV, suggesting that other calcium-sensitive enzymes might mediate TGF-beta action. These results identify CTF/NF-I as a novel calcium signaling pathway-responsive transcription factor and further suggest multiple molecular mechanisms for the induction of CTF/NF-I transcriptional activity by growth factors.
Resumo:
Phosphate homeostasis in multicellular eukaryotes depends on both phosphate influx and efflux. The mammalian Xenotropic Polytropic Virus Receptor 1 (XPR1) shares homology to the Arabidopsis PHO1, a phosphate exporter expressed in roots. However, phosphate export activity of XPR1 has not yet been demonstrated in a heterologous system. Here, wedemonstrate that transient expression in tobacco leaves of XPR1-GFP leads to specific phosphate export. Like PHO1-GFP, XPR1-GFP is localized predominantly to the endomembrane system in tobacco cells. These results show that tobacco leaves are a good heterologous system to study the transport activity of members of the PHO1/XPR1 family.
Resumo:
The tumor necrosis factor (TNF) family member B cell activating factor (BAFF) binds B cells and enhances B cell receptor-triggered proliferation. We find that B cell maturation antigen (BCMA), a predicted member of the TNF receptor family expressed primarily in mature B cells, is a receptor for BAFF. Although BCMA was previously localized to the Golgi apparatus, BCMA was found to be expressed on the surface of transfected cells and tonsillar B cells. A soluble form of BCMA, which inhibited the binding of BAFF to a B cell line, induced a dramatic decrease in the number of peripheral B cells when administered in vivo. Moreover, culturing splenic cells in the presence of BAFF increased survival of a percentage of the B cells. These results are consistent with a role for BAFF in maintaining homeostasis of the B cell population.
Resumo:
Lesioned axons do not regenerate in the adult mammalian central nervous system, owing to the overexpression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3 (GSK3) and ERK1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3 and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: i) cerebellar granule cells and ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3 inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Lastly these regenerative effects were corroborated in the lesioned EHP in NgR1 -/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections.
Resumo:
BACKGROUND: Gastro-oesophageal adenocarcinomas rarely metastasize to the central nervous system (CNS). The role of the human epidermal growth factor receptor 2 (HER2) in patients with these cancers and CNS involvement is presently unknown. PATIENTS AND METHODS: A multicentre registry was established to collect data from patients with gastro-oesophageal adenocarcinomas and CNS involvement both retrospectively and prospectively. Inclusion in the study required a predefined clinical data set, a central neuro-radiological or histopathological confirmation of metastatic CNS involvement and central assessment of HER2 by immunohistochemistry (IHC) and in situ hybridisation (ISH). In addition, expression of E-cadherin and DNA mismatch repair (MMR) proteins were assessed by IHC. RESULTS: One hundred patients fulfilled the inclusion criteria. The population's median age was 59 years (interquartile range: 54-68), of which 85 (85%) were male. Twenty-five patients were of Asian and 75 of Caucasian origin. HER2 status was positive in 36% (95% CI: 26.6-46.2) of cases. Median time from initial diagnosis to the development of brain metastases (BMets) or leptomeningeal carcinomatosis (LC) was 9.9 months (95% CI: 8.5-15.0). Median overall survival from diagnosis was 16.9 months (95% CI: 14.0-20.7) and was not related to the HER2 status. E-cadherin loss was observed in 9% of cases and loss of expression in at least one DNA MMR proteins in 6%. CONCLUSIONS: The proportion of a positive HER2 status in patients with gastro-oesophageal adenocarcinoma and CNS involvement was higher than expected. The impact of anti-HER2 therapies should be studied prospectively.
Resumo:
Interferon (IFN)-alpha receptor mRNA expression in liver of patients with chronic hepatitis C has been shown to be a response to IFN-alpha therapy. The objective of the present study was to determine whether the expression of mRNA for subunit 1 of the IFN-alpha receptor (IFNAR1) in peripheral blood mononuclear cells (PBMC) is associated with the response to IFN-alpha in patients with chronic hepatitis C. Thirty patients with positive anti-HCV and HCV-RNA, and abnormal levels of alanine aminotransferase in serum were selected and treated with IFN-alpha2b for one year. Those with HBV or HIV infection, or using alcohol were not included. Thirteen discontinued the treatment and were not evaluated. The IFN-alpha response was monitored on the basis of alanine aminotransferase level and positivity for HCV-RNA in serum. IFNAR1-mRNA expression in PBMC was measured by reverse transcription-polymerase chain reaction before and during the first three months of therapy. The results are reported as IFNAR1-mRNA/ß-actin-mRNA ratio (mean ± SD). Before treatment, responder patients had significantly higher IFNAR1-mRNA expression in PBMC (0.67 ± 0.15; N = 5; P < 0.05) compared to non-responders (0.35 ± 0.17; N = 12) and controls (0.30 ± 0.16; N = 9). Moreover, IFNAR1-mRNA levels were significantly reduced after 3 months of treatment in responders, whereas there were no differences in IFNAR1 expression in non-responders during IFN-alpha therapy. Basal IFNAR1-mRNA expression was not correlated with the serum level of alanine and aspartate aminotransferases or the presence of cirrhosis. The present results suggest that IFNAR1-mRNA expression in PBMC is associated with IFN-alpha response to hepatitis C and may be useful for monitoring therapy in patients with chronic hepatitis C.
Resumo:
We examined the association of three established single nucleotide polymorphisms, IVS1-397T>C, IVS1-351A>G, and +261G>C, in the ESR1 gene with the prevalence and severity of coronary atherosclerosis in a southern Brazilian population of European ancestry. Three hundred and forty-one subjects (127 women and 214 men) with coronary artery disease (CAD) were classified as having significant disease (CAD+ patient group) when they showed 60% or more luminal stenosis in at least one coronary artery or major branch segment at angiography; patients with 10% or less luminal stenosis were considered to have minimal CAD (CAD- patient group). The control sample consisted of 142 subjects (79 women and 63 men) without significant disease, in whom coronary angiography to rule out the presence of asymptomatic CAD was not performed. The polymorphisms were investigated by polymerase chain reaction followed by restriction analyses. In the male sample, the +261G>C*C allele was more frequent in CAD+ than CAD- subjects (8 versus 1%, P = 0.024). Homozygosity for the C allele of the IVS1-397T>C polymorphism was also significantly associated with increased CAD severity (OR: 2.99; 95% CI = 1.35-6.63; P = 0.007). In agreement with previous findings, these results suggest that the IVS1-397T>C*C allele was associated with CAD severity independent of gender, whereas the association of the +261G>C variant with CAD was observed in males only. The relation between ESR1 variation and CAD may influence clinical decisions such as the use of hormone therapy, and additionally will be helpful to identify the genetic susceptibility determinants of cardiovascular disease development.
Resumo:
Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.