853 resultados para Expert Systems Building Tools


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of the most common human functions such as temporal and non-monotonic reasoning have not yet been fully mapped in developed systems, even though some theoretical breakthroughs have already been accomplished. This is mainly due to the inherent computational complexity of the theoretical approaches. In the particular area of fault diagnosis in power systems however, some systems which tried to solve the problem, have been deployed using methodologies such as production rule based expert systems, neural networks, recognition of chronicles, fuzzy expert systems, etc. SPARSE (from the Portuguese acronym, which means expert system for incident analysis and restoration support) was one of the developed systems and, in the sequence of its development, came the need to cope with incomplete and/or incorrect information as well as the traditional problems for power systems fault diagnosis based on SCADA (supervisory control and data acquisition) information retrieval, namely real-time operation, huge amounts of information, etc. This paper presents an architecture for a decision support system, which can solve the presented problems, using a symbiosis of the event calculus and the default reasoning rule based system paradigms, insuring soft real-time operation with incomplete, incorrect or domain incoherent information handling ability. A prototype implementation of this system is already at work in the control centre of the Portuguese Transmission Network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system for tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the proposal of an architecture for developing systems that interact with Ambient Intelligence (AmI) environments. This architecture has been proposed as a consequence of a methodology for the inclusion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Systems Research for Ambient Intelligence). The ISyRAmI architecture considers several modules. The first is related with the acquisition of data, information and even knowledge. This data/information knowledge deals with our AmI environment and can be acquired in different ways (from raw sensors, from the web, from experts). The second module is related with the storage, conversion, and handling of the data/information knowledge. It is understood that incorrectness, incompleteness, and uncertainty are present in the data/information/knowledge. The third module is related with the intelligent operation on the data/information/knowledge of our AmI environment. Here we include knowledge discovery systems, expert systems, planning, multi-agent systems, simulation, optimization, etc. The last module is related with the actuation in the AmI environment, by means of automation, robots, intelligent agents and users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho, apresentam-se e discutem-se os resultados da aplicação da técnica de amostragem linear de descontinuidades em faces expostas do maciço rochoso da pedreira granítica de S. Domingos Nº 2 (Fontelo, Armamar; N de Portugal). É, igualmente, utilizada informação sobre a rede de fracturação regional, obtida através da análise morfoestrutural de mapas topográficos e mapas geológicos. São ainda referidos os métodos utilizados no tratamento dos dados de terreno com o objectivo de definir as famílias de descontinuidades e de caracterizar estatísticamente a sua atitude, espaçamento e extensão. Os resultados obtidos são comparados, à mega escala e macro-escala, no sentido de averiguar a presença de um padrão de fracturação com dimensão multiescala. Esta abordagem foi refinada através da aplicação de Sistemas de Informação Geográfica. A aplicação desta técnica para a caracterização da compartimentação do maciço poderá contribuir para aperfeiçoar a gestão sustentável do georrecurso da pedreira de S. Domingos Nº 2 (Fontelo). O controlo geomecânico do desmonte do maciço rochoso é salientado com o intuito de uma abordagem de geo-engenharia integrada dos maciços rochosos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on the problem of feature selection for clustering continues to develop. This is a challenging task, mainly due to the absence of class labels to guide the search for relevant features. Categorical feature selection for clustering has rarely been addressed in the literature, with most of the proposed approaches having focused on numerical data. In this work, we propose an approach to simultaneously cluster categorical data and select a subset of relevant features. Our approach is based on a modification of a finite mixture model (of multinomial distributions), where a set of latent variables indicate the relevance of each feature. To estimate the model parameters, we implement a variant of the expectation-maximization algorithm that simultaneously selects the subset of relevant features, using a minimum message length criterion. The proposed approach compares favourably with two baseline methods: a filter based on an entropy measure and a wrapper based on mutual information. The results obtained on synthetic data illustrate the ability of the proposed expectation-maximization method to recover ground truth. An application to real data, referred to official statistics, shows its usefulness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electricity industry throughout the world, which has long been dominated by vertically integrated utilities, has experienced major changes. Deregulation, unbundling, wholesale and retail wheeling, and real-time pricing were abstract concepts a few years ago. Today market forces drive the price of electricity and reduce the net cost through increased competition. As power markets continue to evolve, there is a growing need for advanced modeling approaches. This article addresses the challenge of maximizing the profit (or return) of power producers through the optimization of their share of customers. Power producers have fixed production marginal costs and decide the quantity of energy to sell in both day-ahead markets and a set of target clients, by negotiating bilateral contracts involving a three-rate tariff. Producers sell energy by considering the prices of a reference week and five different types of clients with specific load profiles. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doctoral Thesis in Information Systems and Technologies Area of Engineering and Manag ement Information Systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets are systems for effecting the purchase and sale of electricity using supply and demand to set energy prices. Two major market models are often distinguished: pools and bilateral contracts. Pool prices tend to change quickly and variations are usually highly unpredictable. In this way, market participants often enter into bilateral contracts to hedge against pool price volatility. This article addresses the challenge of optimizing the portfolio of clients managed by trader agents. Typically, traders buy energy in day-ahead markets and sell it to a set of target clients, by negotiating bilateral contracts involving three-rate tariffs. Traders sell energy by considering the prices of a reference week and five different types of clients. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional vertically integrated power utilities around the world have evolved from monopoly structures to open markets that promote competition among suppliers and provide consumers with a choice of services. Market forces drive the price of electricity and reduce the net cost through increased competition. Electricity can be traded in both organized markets or using forward bilateral contracts. This article focuses on bilateral contracts and describes some important features of an agent-based system for bilateral trading in competitive markets. Special attention is devoted to the negotiation process, demand response in bilateral contracting, and risk management. The article also presents a case study on forward bilateral contracting: a retailer agent and a customer agent negotiate a 24h-rate tariff. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electricity industry throughout the world, which has long been dominated by vertically integrated utilities, has experienced major changes. Deregulation, unbundling, wholesale and retail wheeling, and real-time pricing were abstract concepts a few years ago. Today market forces drive the price of electricity and reduce the net cost through increased competition. As power markets continue to evolve, there is a growing need for advanced modeling approaches. This article addresses the challenge of maximizing the profit (or return) of power producers through the optimization of their share of customers. Power producers have fixed production marginal costs and decide the quantity of energy to sell in both day-ahead markets and a set of target clients, by negotiating bilateral contracts involving a three-rate tariff. Producers sell energy by considering the prices of a reference week and five different types of clients with specific load profiles. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A informação e a sua gestão é considerada nos nossos dias como o principal factor de sucesso ou insucesso para qualquer actividade económica ou social. O desenvolvimento de novas tecnologias força todos os agentes econcómicos a desenvolverem-se nestas áreas para conseguirem vantagens concorrenciais. Este trabalho visa fazer uma apresentação de uma “nova” área da ciência da computação a que se chamou Inteligência Artificial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A importância da internet é hoje uma realidade cuja facilidade que nos traz de aceder a produtos ouserviços, informação ou até mesmo aproximar pessoas, torna-­‐a ainda mais indispensável. Cada vez mais, a nossa vida é feita através internet. Seja uma simples consulta de informação de horário de funcionamento de uma loja, a compra de produtos de uma loja usando plataformas de venda online, transações bancárias ou até operações fiscais, a internet faz parte das nossas vidas. Até novas áreas de negócio surgem com a massificação do uso da internet. Naturalmente, o surgimento de plataformas que repliquem o mundo real no mundo virtual torna­‐se bastante óbvio e cada vez mais desejado. A pesquisa de emprego é algo bastante comum no mundo real. Naturalmente, com a internet, surgiram e surgem plataformas dedicadas a esta área. As empresas que disponibilizam empregos recorrem-­‐se destas plataformas pois, estão ao alcance de muitos utilizadores e, geralmente, são gratuitas, juntando o melhor de dois mundos. A necessidade de atingir com maior eficácia o publico alvo leva a que surjam plataformas com maior granularidade de áreas de emprego ou então especializadas em determinadas áreas. Contudo, a pesquisa nestas plataformas fica aquém do desejado pois não tem em consideração a relevância de um emprego para o utilizador apresentando resultados irrelevantes. No sentido de oferecer um novo paradigma de pesquisa de empregos, criou-­se uma plataforma, dotada de conhecimento, que estende a pesquisa o tipo de pesquisa tradicional obtendo mais resultados com muita relevância para o utilizador.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dissertation submitted to Departamento de Engenharia Electrotécnica of Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia Electrotécnica e de Computadores