945 resultados para Exercise Hyperthermia Cytokines Stress hormones Cold water immersion
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Lettered on cover: Third edition.
Resumo:
Mode of access: Internet.
Resumo:
Preface signed: The compilers.
Resumo:
Includes index.
Resumo:
Aims Prior research is limited with regard to the diagnostic and prognostic accuracy of commonplace cardiac imaging modalities in women. The aim of this study was to examine 5-year mortality in 4234 women and 6898 men undergoing exercise or dobutamine stress echocardiography at three hospitals. Methods and results Univariable and multivariable Cox proportional hazards models were used to estimate time to cardiac death in this multi-centre, observational registry. Of the 11 132 patients, women had a greater frequency of cardiac risk factors (P < 0.0001). However, men more often had a history of coronary disease including a greater frequency of echocardiographic wall motion abnormalities (P < 0.0001). During 5 years of follow-up, 103 women and 226 men died from ischaernic heart disease (P < 0.0001). Echocardiographic estimates of left ventricular function (P < 0.0001) and the extent of ischaernic watt motion abnormalities (P < 0.0001) were highly predictive of cardiac death. Risk-adjusted 5-year survival was 99.4, 97.6, and 95% for exercising women with no, single, and multi-vessel ischaemia (P < 0.0001). For women undergoing dobutamine stress, 5-year survival was 95, 89, and 86.6% for those with 0, 1, and 2-3 vessel ischaemia (P < 0.0001). Exercising men had a 2.0-fold higher risk at every level of worsening ischaemia (P < 0.0001). Significantly worsening cardiac survival was noted for the 1568 men undergoing dobutamine stress echocardiography (P < 0.0001); no ischaemia was associated with 92% 5-year survival as compared with death rates of &GE; 16% for men with ischaemia on dobutamine stress echocardiography (P < 0.0001). Conclusion Echocardiographic measures of inducible wall motion abnormalities and global and regional left ventricutar function are highly predictive of long-term outcome for women and men alike.
Resumo:
Rice (Oryza sativa L.) plants are susceptible to low temperature during the young microspore stage, which occurs 10-12 days before heading. Low temperature at this time increases spikelet sterility which can cause massive yield loss. Increasing the cold tolerance of cultivars can reduce yield variability in temperate rice-growing environments. Two experiments were conducted in cold air screenings and two were conducted in cold water screenings to examine genotypic variation for cold tolerance, explore flowering traits related to spikelet sterility, and investigate whether the results reflect the level of cold tolerance determined previously in the field. Cold air screenings imposed day/night temperatures of 27 degrees C/13 degrees C, 25 degrees C/15 degrees C and 32 degrees C/25 degrees C following particle initiation until 50% heading, while cold water screenings maintained a relatively constant 19 degrees C. The variation in the commencement of low air temperature treatment did not have an effect on the level of spikelet sterility, indicating that exposure to low temperature during the young microspore stage was more important than the duration of exposure. Spikelet sterility of common cultivars showed a significant correlation between cold air and cold water screenings (r(2) = 0.63, p < 0.01), cold air and field screenings (r(2) = 0.52, p < 0.01) and cold water and field screenings (r(2) = 0.53, p < 0.01), indicating that cold air and cold water can be used for screening genotypes for low temperature tolerance. HSC55, M 103 and Jyoudeki were identified as cold tolerant and Doongara, Sasanishiki and Nipponbare as susceptible cultivars. There was a significant negative relationship between spikelet sterility and both the number of engorged pollen grains per anther and anther area only after imposing cold air and cold water treatment hence, it was concluded that these flowering traits were facultative in nature. In addition, cultivars originating from Australia and California were inefficient at producing filled grain with similar sized anthers containing a similar number of engorged pollen grains as cultivars from other origins. One suggested reason for this poor conversion to filled grain of cultivars from Australia and California may be associated with their small stigma area, particularly when exposed to low temperature conditions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The origin of three Red Sea submarine brine pools was investigated by analysis of the S and O isotope ratios of dissolved sulfate and Sr isotope ratios of dissolved Sr in the brines. Sulfur and O isotope ratios of sulfate and Sr isotope ratios of evaporitic source rocks for the brines were measured for comparison. The S, O and Sr isotope ratios of evaporites recovered from DSDP site 227 are consistent with an upper Miocene evaporites age. The Valdivia Deep brine formed by karstic dissolution of Miocene evaporites by overlying seawater and shows no signs of hydrothermal input. The Suakin Deep brines are derived from, or have isotopically exchanged with Miocene or older evaporites. There has been only minor dilution of the brine by overlying seawater. Strontium isotope ratios of Suakin brine may indicate addition of a minor (15%) amount of volcanic Sr to the brine, but there is no evidence of high temperature brine-rock interaction. The sulfate in the Atlantis II brine was apparently derived from seawater. The O isotope ratio of sulfate in the present Atlantis II brine could reflect isotopic exchange between seawater sulfate and the brine at approximately 255°C. Approximately 30% of the Sr in the Atlantis II brine is derived from the underlying basalt, probably by hydrothermal leaching. Atlantis II brine is the only known example from the Red Sea which has a significant high-temperature hydrothermal history.