966 resultados para Event-Related Potentials, P300


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Event-related potentials (ERPs) were recorded while subjects made old/new recognition judgments on new unstudied words and old words which had been presented at study either once ('weak') or three times ('strong'). The probability of an 'old' response was significantly higher for strong than weak words and significantly higher for weak than new words. Comparisons were made initially between ERPs to new, weak and strong words, and subsequently between ERPs associated with six strength-by-response conditions. The N400 component was found to be modulated by memory trace strength in a graded manner. Its amplitude was most negative in new word ERPs and most positive in strong word ERPs. This 'N400 strength effect' was largest at the left parietal electrode (in ear-referenced ERPs). The amplitude of the late positive complex (LPC) effect was sensitive to decision accuracy (and perhaps confidence). Its amplitude was larger in ERPs evoked by words attracting correct versus incorrect recognition decisions. The LPC effect had a left > right, centro-parietal scalp topography (in ear-referenced ERPs). Hence, whereas, the majority of previous ERP studies of episodic recognition have interpreted results from the perspective of dual-process models, we provide alternative interpretations of N400 and LPC old/new effects in terms of memory strength and decisional factor(s). (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individual differences in the variance of event-related potential (ERP) slow wave (SW) measures were examined. SW was recorded at prefrontal and parietal sites during memory and sensory trials of a delayed-response task in 391 adolescent twin pairs. Familial resemblance was identified and there was a strong suggestion of genetic influence. A common genetic factor influencing memory and sensory SW was identified at the prefrontal site (accounting for an estimated 35%-37% of the reliable variance) and at the parietal site (51%-52% of the reliable variance). Remaining reliable variance was influenced by unique environmental factors. Measurement error accounted for 24% to 30% of the total variance of each variable. The results show genetic independence for recording site, but not trial type, and suggest that the genetic factors identified relate more directly to brain structures, as defined by the cognitive functions they support, than to the cognitive networks that link them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is overwhelming evidence for the existence of substantial genetic influences on individual differences in general and specific cognitive abilities, especially in adults. The actual localization and identification of genes underlying variation in cognitive abilities and intelligence has only just started, however. Successes are currently limited to neurological mutations with rather severe cognitive effects. The current approaches to trace genes responsible for variation in the normal ranges of cognitive ability consist of large scale linkage and association studies. These are hampered by the usual problems of low statistical power to detect quantitative trait loci (QTLs) of small effect. One strategy to boost the power of genomic searches is to employ endophenotypes of cognition derived from the booming field of cognitive neuroscience This special issue of Behavior Genetics reports on one of the first genome-wide association studies for general IQ. A second paper summarizes candidate genes for cognition, based on animal studies. A series of papers then introduces two additional levels of analysis in the ldquoblack boxrdquo between genes and cognitive ability: (1) behavioral measures of information-processing speed (inspection time, reaction time, rapid naming) and working memory capacity (performance on on single or dual tasks of verbal and spatio-visual working memory), and (2) electrophyiosological derived measures of brain function (e.g., event-related potentials). The obvious way to assess the reliability and validity of these endophenotypes and their usefulness in the search for cognitive ability genes is through the examination of their genetic architecture in twin family studies. Papers in this special issue show that much of the association between intelligence and speed-of-information processing/brain function is due to a common gene or set of genes, and thereby demonstrate the usefulness of considering these measures in gene-hunting studies for IQ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Temporal lobe epilepsy (TLE) is a neurological disorder that directly affects cortical areas responsible for auditory processing. The resulting abnormalities can be assessed using event-related potentials (ERP), which have high temporal resolution. However, little is known about TLE in terms of dysfunction of early sensory memory encoding or possible correlations between EEGs, linguistic deficits, and seizures. Mismatch negativity (MMN) is an ERP component – elicited by introducing a deviant stimulus while the subject is attending to a repetitive behavioural task – which reflects pre-attentive sensory memory function and reflects neuronal auditory discrimination and perceptional accuracy. Hypothesis: We propose an MMN protocol for future clinical application and research based on the hypothesis that children with TLE may have abnormal MMN for speech and non-speech stimuli. The MMN can be elicited with a passive auditory oddball paradigm, and the abnormalities might be associated with the location and frequency of epileptic seizures. Significance: The suggested protocol might contribute to a better understanding of the neuropsychophysiological basis of MMN. We suggest that in TLE central sound representation may be decreased for speech and non-speech stimuli. Discussion: MMN arises from a difference to speech and non-speech stimuli across electrode sites. TLE in childhood might be a good model for studying topographic and functional auditory processing and its neurodevelopment, pointing to MMN as a possible clinical tool for prognosis, evaluation, follow-up, and rehabilitation for TLE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Auditory event-related potentials (AERPs) are widely used in diverse fields of today’s neuroscience, concerning auditory processing, speech perception, language acquisition, neurodevelopment, attention and cognition in normal aging, gender, developmental, neurologic and psychiatric disorders. However, its transposition to clinical practice has remained minimal. Mainly due to scarce literature on normative data across age, wide spectrumof results, variety of auditory stimuli used and to different neuropsychological meanings of AERPs components between authors. One of the most prominent AERP components studied in last decades was N1, which reflects auditory detection and discrimination. Subsequently, N2 indicates attention allocation and phonological analysis. The simultaneous analysis of N1 and N2 elicited by feasible novelty experimental paradigms, such as auditory oddball, seems an objective method to assess central auditory processing. The aim of this systematic review was to bring forward normative values for auditory oddball N1 and N2 components across age. EBSCO, PubMed, Web of Knowledge and Google Scholarwere systematically searched for studies that elicited N1 and/or N2 by auditory oddball paradigm. A total of 2,764 papers were initially identified in the database, of which 19 resulted from hand search and additional references, between 1988 and 2013, last 25 years. A final total of 68 studiesmet the eligibility criteria with a total of 2,406 participants from control groups for N1 (age range 6.6–85 years; mean 34.42) and 1,507 for N2 (age range 9–85 years; mean 36.13). Polynomial regression analysis revealed thatN1latency decreases with aging at Fz and Cz,N1 amplitude at Cz decreases from childhood to adolescence and stabilizes after 30–40 years and at Fz the decrement finishes by 60 years and highly increases after this age. Regarding N2, latency did not covary with age but amplitude showed a significant decrement for both Cz and Fz. Results suggested reliable normative values for Cz and Fz electrode locations; however, changes in brain development and components topography over age should be considered in clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Abnormalities in emotional prosody processing have been consistently reported in schizophrenia and are related to poor social outcomes. However, the role of stimulus complexity in abnormal emotional prosody processing is still unclear. Method: We recorded event-related potentials in 16 patients with chronic schizophrenia and 16 healthy controls to investigate: 1) the temporal course of emotional prosody processing; and 2) the relative contribution of prosodic and semantic cues in emotional prosody processing. Stimuli were prosodic single words presented in two conditions: with intelligible (semantic content condition—SCC) and unintelligible semantic content (pure prosody condition—PPC). Results: Relative to healthy controls, schizophrenia patients showed reduced P50 for happy PPC words, and reduced N100 for both neutral and emotional SCC words and for neutral PPC stimuli. Also, increased P200 was observed in schizophrenia for happy prosody in SCC only. Behavioral results revealed higher error rates in schizophrenia for angry prosody in SCC and for happy prosody in PPC. Conclusions: Together, these data further demonstrate the interactions between abnormal sensory processes and higher-order processes in bringing about emotional prosody processing dysfunction in schizophrenia. They further suggest that impaired emotional prosody processing is dependent on stimulus complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study used event-related potentials to examine interactions between mood, sentence context, and semantic memory structure in schizophrenia. Seventeen male chronic schizophrenia and 15 healthy control subjects read sentence pairs after positive, negative, or neutral mood induction. Sentences ended with expected words (EW), within-category violations (WCV), or between-category violations (BCV). Across all moods, patients showed sensitivity to context indexed by reduced N400 to EW relative to both WCV and BCV. However, they did not show sensitivity to the semantic memory structure. N400 abnormalities were particularly enhanced under a negative mood in schizophrenia. These findings suggest abnormal interactions between mood, context processing, and connections within semantic memory in schizophrenia, and a specific role of negative mood in modulating semantic processes in this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Emotion, audition, event-related potentials, MMN, multidimensional scaling, timbre, perception

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estudi elaborat a partir d’una estada a la University of Wales, Bangor, Regne Unit entre setembre i desembre del 2006. Els sons distractors augmenten el temps de reacció i el nombre de respostes incorrectes en una tasca de classificació visual, demostrant que hi ha distracció conductual durant la realització de la tasca visual. L’enregistrament concomitant de potencials evocats durant la distracció mostra un patró neuroelèctric característic, el potencial de distracció, que es caracteritza per una ona trifàsica. Darrerament, s’ha demostrat que factors “des de dalt” associats al muntatge experimental tindrien una gran influència en els efectes que els estímuls distractors tindrien en la tasca. Estudis recents mostrarien que aquesta resposta d’atenció exògena es pot modular per la càrrega en memòria de treball, reduint-ne la distracció amb la càrrega, fet que contradiu altres dades que mostraven l’efecte oposat. L’objectiu d’aquest estudi ha estat investigar en quines condicions la càrrega en memòria de treball pot exercir un efecte modulador en les respostes conductuals i cerebrals als sons novedosos distractors, i establir la dinàmica espacio-temporal d’aquesta modulació.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using event-related potentials (ERPs), we investigated the neural response associated with preparing to switch from one task to another. We used a cued task-switching paradigm in which the interval between the cue and the imperative stimulus was varied. The difference between response time (RT) to trials on which the task switched and trials on which the task repeated (switch cost) decreased as the interval between cue and target (CTI) was increased, demonstrating that subjects used the CTI to prepare for the forthcoming task. However, the RT on repeated-task trials in blocks during which the task could switch (mixed-task blocks) were never as short as RTs during single-task blocks (mixing cost). This replicates previous research. The ERPs in response to the cue were compared across three conditions: single-task trials, switch trials, and repeat trials. ERP topographic differences were found between single-task trials and mixed-task (switch and repeat) trials at approximately 160 and approximately 310 msec after the cue, indicative of changes in the underlying neural generator configuration as a basis for the mixing cost. In contrast, there were no topographic differences evident between switch and repeat trials during the CTI. Rather, the response of statistically indistinguishable generator configurations was stronger at approximately 310 msec on switch than on repeat trials. By separating differences in ERP topography from differences in response strength, these results suggest that a reappraisal of previous research is appropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection and discrimination of visuospatial input involve at least extracting, selecting and encoding relevant information and decision-making processes allowing selecting a response. These two operations are altered, respectively, by attentional mechanisms that change discrimination capacities, and by beliefs concerning the likelihood of uncertain events. Information processing is tuned by the attentional level that acts like a filter on perception, while decision-making processes are weighed by subjective probability of risk. In addition, it has been shown that anxiety could affect the detection of unexpected events through the modification of the level of arousal. Consequently, purpose of this study concerns whether and how decision-making and brain dynamics are affected by anxiety. To investigate these questions, the performance of women with either a high (12) or a low (12) STAI-T (State-Trait Anxiety Inventory, Spielberger, 1983) was examined in a decision-making visuospatial task where subjects have to recognize a target visual pattern from non-target patterns. The target pattern was a schematic image of furniture arranged in such a way as to give the impression of a living room. Non-target patterns were created by either the compression or the dilatation of the distances between objects. Target and non-target patterns were always presented in the same configuration. Preliminary behavioral results show no group difference in reaction time. In addition, visuo-spatial abilities were analyzed trough the signal detection theory for quantifying perceptual decisions in the presence of uncertainty (Green and Swets, 1966). This theory treats detection of a stimulus as a decision-making process determined by the nature of the stimulus and cognitive factors. Astonishingly, no difference in d' (corresponding to the distance between means of the distributions) and c (corresponds to the likelihood ratio) indexes was observed. Comparison of Event-related potentials (ERP) reveals that brain dynamics differ according to anxiety. It shows differences in component latencies, particularly a delay in anxious subjects over posterior electrode sites. However, these differences are compensated during later components by shorter latencies in anxious subjects compared to non-anxious one. These inverted effects seem indicate that the absence of difference in reaction time rely on a compensation of attentional level that tunes cortical activation in anxious subjects, but they have to hammer away to maintain performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The age-related increase in interference susceptibility has been well documented and largely attributed to a deficit in inhibition. In the present study, event-related potentials were used to investigate EEG correlates of inhibitory processing in an interference "Arrow" task. A specific interest was addressed to theN2 and P3 components that respectively refers to conflict monitoring and to efficiency of inhibition processes (Anguera et al,. 2011). Younger (N=10, Mage=24.6) and older (N=10, Mage=65.5) participants were invited to perform a task consisting in deciding, as fast and accurately as possible, whether an arrow presented on a computer screen points to the left or the right, irrespective of its position on the screen (left, middle or right). Responses were provided by key-presses using the left and right indexes. Three conditions were considered: congruent (arrow pointing to the same direction as that of the side of the screen on which it appears), incongruent (arrow pointing to the opposite direction), and neutral (arrow presented at the center of the screen). A total of 56 trials per conditions were performed. Behaviorally, the results showed that in the incongruent condition the percent of correct responses significantly decreased in both groups. After adjustment with simple RT (additional control task), the increased RTs obtained in the old group were significantly more pronounced in the incongruent condition. With respect to electrophysiological data, results showed that frontal site (Fz), the N2 amplitude was significantly larger for the younger as compared to the older (- 2.55 μV vs. -0.62 μV respectively) whatever the condition. At central site (Cz), the P3 amplitude significantly decreased in the older compared to the younger in the incongruent condition only. Our findings suggest that the increased RTs observed in older participants during the incongruent condition is more specifically linked to late cognitive resources involved in inhibiting prepotent response tendencies rather than associated with earlier stages of treatment dedicated to conflict monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To analyze the neural basis of electric taste we performed electrical neuroimaging analyses of event-related potentials (ERPs) recorded while participants received electrical pulses to the tongue. Pulses were presented at individual taste threshold to excite gustatory fibers selectively without concomitant excitation of trigeminal fibers and at high intensity evoking a prickling and, thus, activating trigeminal fibers. Sour, salty and metallic tastes were reported at both intensities while clear prickling was reported at high intensity only. ERPs exhibited augmented amplitudes and shorter latencies for high intensity. First activations of gustatory areas (bilateral anterior insula, medial orbitofrontal cortex) were observed at 70-80ms. Common somatosensory regions were more strongly, but not exclusively, activated at high intensity. Our data provide a comprehensive view on the dynamics of cortical processing of the gustatory and trigeminal portions of electric taste and suggest that gustatory and trigeminal afferents project to overlapping cortical areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this tutorial review, we detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial (i.e. topographic) information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions. In these and other ways these topographic analysis methods allow the experimenter to glean additional information and neurophysiologic interpretability beyond what is available from canonical waveform analyses. In this tutorial we present the example of somatosensory evoked potentials (SEPs) in response to stimulation of each hand to illustrate these points. For each step of these analyses, we provide the reader with both a conceptual and mathematical description of how the analysis is carried out, what it yields, and how to interpret its statistical outcome. We show that these topographic analysis methods are intuitive and easy-to-use approaches that can remove much of the guesswork often confronting ERP researchers and also assist in identifying the information contained within high-density ERP datasets.