930 resultados para Event Management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesn’t improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a “singular” experimental orchard named “Asymmetric orchard”, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. “Asymmetric” training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 – 1200 μmolm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal ΔpH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we studied the efficiency of the benchmarks used in the asset management industry. In chapter 2 we analyzed the efficiency of the benchmark used for the government bond markets. We found that for the Emerging Market Bonds an equally weighted index for the country weights is probably the more suited because guarantees maximum diversification of country risk but for the Eurozone government bond market we found a GDP weighted index is better because the most important matter is to avoid a higher weight for highly indebted countries. In chapter 3 we analyzed the efficiency of a Derivatives Index to invest in the European corporate bond market instead of a Cash Index. We can state that the two indexes are similar in terms of returns, but that the Derivatives Index is less risky because it has a lower volatility, has values of skewness and kurtosis closer to those of a normal distribution and is a more liquid instrument, as the autocorrelation is not significant. In chapter 4 it is analyzed the impact of fallen angels on the corporate bond portfolios. Our analysis investigated the impact of the month-end rebalancing of the ML Emu Non Financial Corporate Index for the exit of downgraded bond (the event). We can conclude a flexible approach to the month-end rebalancing is better in order to avoid a loss of valued due to the benchmark construction rules. In chapter 5 we did a comparison between the equally weighted and capitalization weighted method for the European equity market. The benefit which results from reweighting the portfolio into equal weights can be attributed to the fact that EW portfolios implicitly follow a contrarian investment strategy, because they mechanically rebalance away from stocks that increase in price.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular event rates have been shown to increase substantially with the number of symptomatic disease locations. We sought to assess the risk profile, management and subsequent event rates of polyvascular disease patients. Consecutive outpatients were assessed for atherosclerotic risk factors and medications in the REACH Registry. A total of 19,117 symptomatic patients in Europe completed a 2-year follow-up: 77.2% with single arterial bed disease (coronary artery or cerebrovascular or peripheral arterial disease) and 22.8% with polyvascular disease (>/= 1 disease location). Polyvascular disease patients were older (68.5 +/- 9.4 vs 66.3 +/- 9.9 years, p < 0.0001), more often current or former smokers (64.9% vs 58.7%, p < 0.0001), and more often suffered from hypertension (59.5% vs 46.6%, p < 0.0001) and diabetes (34.5% vs 25.9%, p < 0.0001) than single arterial bed disease patients. Despite more intense medical therapy, risk factors (smoking, hypertension, low fasting glucose, and low fasting total cholesterol) were less often controlled in polyvascular disease patients. This was associated with substantially more events over 2 years compared with single arterial bed disease patients (cMACCE [cardiovascular death/non-fatal stroke/non-fatal MI] odds ratio, 1.63 [95% CI, 1.45-1.83], p < 0.0001). In conclusion, polyvascular disease patients have more cardiovascular risk factors, and the prognosis for these patients is significantly worse than for patients with single arterial bed disease. This suggests a need to improve detection and consequent medical treatment of polyvascular disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apoptosis is a rare event in normal hepatocytes. However, multiple signals can trigger apoptosis in hepatocytes and it plays a role in the pathogenesis of many liver diseases. This review summarizes the mechanisms of hepatocellular apoptosis and the importance of apoptosis in the pathological processes of liver disease. The potential for non-invasive biomarkers of apoptosis to gauge the extent and follow the evolution of clinical disease is emphasized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 2008 European Football Championship 2008 (Euro 08) is the largest sporting event ever organized in Switzerland. One million visitors came to the city of Berne during the event and the local airport in Bern/Belp registered 261 extra flights. For each football game there were 33,000 fans in the stadium and 100,000 fans in the public viewing zones.The ambulance corps and the Department of Emergency Medicine (ED) at Inselspital, University Hospital Berne, were responsible for basic medical care and emergency medical management. Injuries and illnesses were analyzed by a standardized score (NACA score). The preparation strategy as well as costs and patient numbers are presented in detail.A total of 30 additional ambulance vehicles were used, 4,723 additional working days (one-third medical professionals) were accumulated, 662 ambulance calls were registered and 240 persons needed medical care (62% Swiss, 28% Dutch and 10% other nationalities). Among those needing treatment 51 were treated in 1 of the 4 city hospitals. No injuries with NACA grades VI and VII occurred (NACA I: 4, NACA II: 17, NACA III: 16, NACA IV: 10 and NACA V: 4 patients). The city of Berne compensated the Inselspital Bern with a total of 112,603 Euros for extra medical care costs. The largest amount was spent on security measures (50,300 Euros) and medical staff (medical doctors 22,600 Euros, nurses 29,000 Euros). Because of the poor weather and the exemplary behavior of the fans, the course of events was rather peaceful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The purpose was to study the emergency management of patients with suspected meningitis to identify potential areas for improvement. METHODS: All patients who underwent cerebrospinal fluid puncture at the emergency department of the University Hospital of Bern from January 31, 2004, to October 30, 2008, were included. A total of 396 patients were included in the study. For each patient, we analyzed the sequence and timing for the following management steps: first contact with medical staff, administration of the first antibiotic dose, lumbar puncture (LP), head imaging, and blood cultures. The results were analyzed in relation to clinical characteristics and the referral diagnosis on admission. RESULTS: Of the 396 patient analyzed, 15 (3.7%) had a discharge diagnosis of bacterial meningitis, 119 (30%) had nonbacterial meningitis, and 262 (66.3%) had no evidence of meningitis. Suspicion of meningitis led to earlier antibiotic therapy than suspicion of an acute cerebral event or nonacute cerebral event (P < .0001). In patients with bacterial meningitis, the average time to antibiotics was 136 minutes, with a range of 0 to 340 minutes. Most patients (60.1%) had brain imaging studies performed before LP. On the other hand, half of the patients with a referral diagnosis of meningitis (50%) received antibiotics before performance of an LP. CONCLUSIONS: Few patients with suspected meningitis received antimicrobial therapy within the first 30 minutes after arrival, but most patients with pneumococcal meningitis and typical symptoms were treated early; patients with bacterial meningitis who received treatment late had complex medical histories or atypical presentations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the project, managers encounter numerous contingencies and are faced with the challenging task of making decisions that will effectively keep the project on track. This task is very challenging because construction projects are non-prototypical and the processes are irreversible. Therefore, it is critical to apply a methodological approach to develop a few alternative management decision strategies during the planning phase, which can be deployed to manage alternative scenarios resulting from expected and unexpected disruptions in the as-planned schedule. Such a methodology should have the following features but are missing in the existing research: (1) looking at the effects of local decisions on the global project outcomes, (2) studying how a schedule responds to decisions and disruptive events because the risk in a schedule is a function of the decisions made, (3) establishing a method to assess and improve the management decision strategies, and (4) developing project specific decision strategies because each construction project is unique and the lessons from a particular project cannot be easily applied to projects that have different contexts. The objective of this dissertation is to develop a schedule-based simulation framework to design, assess, and improve sequences of decisions for the execution stage. The contribution of this research is the introduction of applying decision strategies to manage a project and the establishment of iterative methodology to continuously assess and improve decision strategies and schedules. The project managers or schedulers can implement the methodology to develop and identify schedules accompanied by suitable decision strategies to manage a project at the planning stage. The developed methodology also lays the foundation for an algorithm towards continuously automatically generating satisfactory schedule and strategies through the construction life of a project. Different from studying isolated daily decisions, the proposed framework introduces the notion of {em decision strategies} to manage construction process. A decision strategy is a sequence of interdependent decisions determined by resource allocation policies such as labor, material, equipment, and space policies. The schedule-based simulation framework consists of two parts, experiment design and result assessment. The core of the experiment design is the establishment of an iterative method to test and improve decision strategies and schedules, which is based on the introduction of decision strategies and the development of a schedule-based simulation testbed. The simulation testbed used is Interactive Construction Decision Making Aid (ICDMA). ICDMA has an emulator to duplicate the construction process that has been previously developed and a random event generator that allows the decision-maker to respond to disruptions in the emulation. It is used to study how the schedule responds to these disruptions and the corresponding decisions made over the duration of the project while accounting for cascading impacts and dependencies between activities. The dissertation is organized into two parts. The first part presents the existing research, identifies the departure points of this work, and develops a schedule-based simulation framework to design, assess, and improve decision strategies. In the second part, the proposed schedule-based simulation framework is applied to investigate specific research problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Critical incidents in clinical medicine can have far-reaching consequences on patient health. In cases of severe medical errors they can seriously harm the patient or even lead to death. The involvement in such an event can result in a stress reaction, a so-called acute posttraumatic stress disorder in the healthcare provider, the so-called second victim of an adverse event. Psychological distress may not only have a long lasting impact on quality of life of the physician or caregiver involved but it may also affect the ability to provide safe patient care in the aftermath of adverse events. METHODS A literature review was performed to obtain information on care giver responses to medical errors and to determine possible supportive strategies to mitigate negative consequences of an adverse event on the second victim. An internet search and a search in Medline/Pubmed for scientific studies were conducted using the key words "second victim, "medical error", "critical incident stress management" (CISM) and "critical incident stress reporting system" (CIRS). Sources from academic medical societies and public institutions which offer crisis management programs where analyzed. The data were sorted by main categories and relevance for hospitals. Analysis was carried out using descriptive measures. RESULTS In disaster medicine and aviation navigation services the implementation of a CISM program is an efficient intervention to help staff to recover after a traumatic event and to return to normal functioning and behavior. Several other concepts for a clinical crisis management plan were identified. CONCLUSIONS The integration of CISM and CISM-related programs in a clinical setting may provide efficient support in an acute crisis and may help the caregiver to deal effectively with future error events and employee safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.