725 resultados para Euler-Bernoulli
Resumo:
Este Diccionario Biográfico de Matemáticos incluye más de 2040 reseñas de matemáticos, entre las que hay unas 280 de españoles y 36 de mujeres (Agnesi, Blum, Byron, Friedman, Hipatia, Robinson, Scott, etc.), de las que 11 son españolas (Casamayor, Sánchez Naranjo, Sanz-Solé, etc.). Se ha obtenido la mayor parte de las informaciones por medio de los libros recogidos en el apéndice “Bibliografía consultada”; otra parte, de determinadas obras matemáticas de los autores reseñados (estas obras no están incluidas en el citado apéndice, lo están en las correspondientes reseñas de sus autores). Las obras más consultadas han sido las de Boyer, Cajori, Kline, Martinón, Peralta, Rey Pastor y Babini, Wieleitner, las Enciclopedias Espasa, Británica, Larousse, Universalis y Wikipedia. Entre las reseñas incluidas, destacan las siguientes, en orden alfabético: Al-Khuwairizmi, Apolonio, Arquímedes, Jacob y Johann Bernoulli, Brouwer, Cantor, Cauchy, Cayley, Descartes, Diofanto, Euclides, Euler, Fermat, Fourier, Galileo, Gauss, Hilbert, Lagrange, Laplace, Leibniz, Monge, Newton, Pappus, Pascal, Pitágoras, Poincaré, Ptolomeo, Riemann, Weierstrass, etc. Entre los matemáticos españoles destacan las de Echegaray, Etayo, Puig Adam, Rey Pastor, Reyes Prósper, Terradas (de quien Einstein dijo: “Es uno de los seis primeros cerebros mundiales de su tiempo y uno de los pocos que pueden comprender hoy en día la teoría de la relatividad”), Torre Argaiz, Torres Quevedo, los Torroja, Tosca, etc. Se han incluido varias referencias de matemáticos nacidos en la segunda mitad del siglo XX. Entre ellos descuellan nombres como Perelmán o Wiles. Pero para la mayor parte de ellos sería conveniente un mayor distanciamiento en el tiempo para poder dar una opinión más objetiva sobre su obra. Las reseñas no son exhaustivas. Si a algún lector le interesa profundizar en la obra de un determinado matemático, puede utilizar con provecho la bibliografía incluida, o también las obras recogidas en su reseña. En cada reseña se ha seguido la secuencia: nombre, fechas de nacimiento y muerte, profesión, nacionalidad, breve bosquejo de su vida y exposición de su obra. En algunos casos, pocos, no se ha podido encontrar el nombre completo. Cuando sólo existe el año de nacimiento, se indica con la abreviatura “n.”, y si sólo se conoce el año de la muerte, con la abreviatura “m.”. Si las fechas de nacimiento y muerte son sólo aproximadas, se utiliza la abreviatura “h.” –hacia–, abreviatura que también se utiliza cuando sólo se conoce que vivió en una determinada época. Esta utilización es, entonces, similar a la abreviatura clásica “fl.” –floreció–. En algunos casos no se ha podido incluir el lugar de nacimiento del personaje o su nacionalidad. No todos los personajes son matemáticos en sentido estricto, aunque todos ellos han realizado importantes trabajos de índole matemática. Los hay astrónomos como, por ejemplo, Brahe, Copérnico, Laplace; físicos como Dirac, Einstein, Palacios; ingenieros como La Cierva, Shannon, Stoker, Torres Quevedo (muchos matemáticos, considerados primordialmente como tales, se formaron como ingenieros, como Abel Transon, Bombelli, Cauchy, Poincaré); geólogos, cristalógrafos y mineralogistas como Barlow, Buerger, Fedorov; médicos y fisiólogos como Budan, Cardano, Helmholtz, Recorde; naturalistas y biólogos como Bertalanfly, Buffon, Candolle; anatomistas y biomecánicos como Dempster, Seluyanov; economistas como Black, Scholes; estadísticos como Akaike, Fisher; meteorólogos y climatólogos como Budyko, Richardson; filósofos como Platón, Aristóteles, Kant; religiosos y teólogos como Berkeley, Santo Tomás; historiadores como Cajori, Eneström; lingüistas como Chomsky, Grassmann; psicólogos y pedagogos como Brousseau, Fishbeim, Piaget; lógicos como Boole, Robinson; abogados y juristas como Averroes, Fantet, Schweikart; escritores como Aristófanes, Torres de Villarroel, Voltaire; arquitectos como Le Corbusier, Moneo, Utzon; pintores como Durero, Escher, Leonardo da Vinci (pintor, arquitecto, científico, ingeniero, escritor, lingüista, botánico, zoólogo, anatomista, geólogo, músico, escultor, inventor, ¿qué es lo que 6 no fue?); compositores y musicólogos como Gugler, Rameau; políticos como Alfonso X, los Banu Musa, los Médicis; militares y marinos como Alcalá Galiano, Carnot, Ibáñez, Jonquières, Poncelet, Ulloa; autodidactos como Fermat, Simpson; con oficios diversos como Alcega (sastre), Argand (contable), Bosse (grabador), Bürgi (relojero), Dase (calculista), Jamnitzer (orfebre), Richter (instrumentista), etc. También hay personajes de ficción como Sancho Panza (siendo gobernador de la ínsula Barataria, se le planteó a Sancho una paradoja que podría haber sido formulada por Lewis Carroll; para resolverla, Sancho aplicó su sentido de la bondad) y Timeo (Timeo de Locri, interlocutor principal de Platón en el diálogo Timeo). Se ha incluido en un apéndice una extensa “Tabla Cronológica”, donde en columnas contiguas están todos los matemáticos del Diccionario, las principales obras matemáticas (lo que puede representar un esbozo de la historia de la evolución da las matemáticas) y los principales acontecimientos históricos que sirven para situar la época en que aquéllos vivieron y éstas se publicaron. Cada matemático se sitúa en el año de su nacimiento, exacto o aproximado; si no se dispone de este dato, en el año de su muerte, exacto o aproximado; si no se dispone de ninguna de estas fechas, en el año aproximado de su florecimiento. Si sólo se dispone de un periodo de tiempo más o menos concreto, el personaje se clasifica en el año más representativo de dicho periodo: por ejemplo, en el año 250 si se sabe que vivió en el siglo III, o en el año -300 si se sabe que vivió hacia los siglos III y IV a.C. En el apéndice “Algunos de los problemas y conjeturas expuestos en el cuerpo del Diccionario”, se ha resumido la situación actual de algunos de dichos problemas y conjeturas. También se han incluido los problemas que Hilbert planteó en 1900, los expuestos por Smale en 1997, y los llamados “problemas del milenio” (2000). No se estudian con detalle, sólo se indica someramente de qué tratan. Esta segunda edición del Diccionario Biográfico de Matemáticos tiene por objeto su puesta a disposición de la Escuela de Ingenieros de Minas de la Universidad Politécnica de Madrid.
Resumo:
This paper presents a simplified finite element (FE) methodology for solving accurately beam models with (Timoshenko) and without (Bernoulli-Euler) shear deformation. Special emphasis is made on showing how it is possible to obtain the exact solution on the nodes and a good accuracy inside the element. The proposed simplifying concept, denominated as the equivalent distributed load (EDL) of any order, is based on the use of Legendre orthogonal polynomials to approximate the original or acting load for computing the results between the nodes. The 1-span beam examples show that this is a promising procedure that allows the aim of using either one FE and an EDL of slightly higher order or by using an slightly larger number of FEs leaving the EDL in the lowest possible order assumed by definition to be equal to 4 independently of how irregular the beam is loaded.
Resumo:
El hormigón estructural sigue siendo sin duda uno de los materiales más utilizados en construcción debido a su resistencia, rigidez y flexibilidad para diseñar estructuras. El cálculo de estructuras de hormigón, utilizando vigas y vigas-columna, es complejo debido a los fenómenos de acoplamiento entre esfuerzos y al comportamiento no lineal del material. Los modelos más empleados para su análisis son el de Bernoulli-Euler y el de Timoshenko, indicándose en la literatura la conveniencia de usar el segundo cuando la relación canto/luz no es pequeña o los elementos están fuertemente armados. El objetivo fundamental de esta tesis es el análisis de elementos viga y viga-columna en régimen no lineal con deformación por cortante, aplicando el concepto de Pieza Lineal Equivalente (PLE). Concepto éste que consiste básicamente en resolver el problema de una pieza en régimen no lineal, transformándolo en uno lineal equivalente, de modo que ambas piezas tengan la misma deformada y los mismos esfuerzos. Para ello, se hizo en primer lugar un estudio comparado de: las distintas propuestas que aplican la deformación por cortante, de los distintos modelos constitutivos y seccionales del hormigón estructural y de los métodos de cálculo no lineal aplicando el método de elementos finitos (MEF). Teniendo en cuenta que la resolución del problema no lineal se basa en la resolución de sucesivos problemas lineales empleando un proceso de homotopía, los problemas lineales de la viga y viga-columna de Timoshenko, se resuelven mediante MEF, utilizando soluciones nodalmente exactas (SNE) y acción repartida equivalente de cualquier orden. Se obtiene así, con muy pocos elementos finitos, una excelente aproximación de la solución, no sólo en los nodos sino en el interior de los elementos. Se introduce el concepto PLE para el análisis de una barra, de material no lineal, sometida a acciones axiales, y se extiende el mismo para el análisis no lineal de vigas y vigas-columna con deformación por cortante. Cabe señalar que para estos últimos, la solución de una pieza en régimen no lineal es igual a la de una en régimen lineal, cuyas rigideces son constantes a trozos, y donde además hay que añadir momentos y cargas puntuales ficticias en los nodos, así como, un momento distribuido ficticio en toda la pieza. Se han desarrollado dos métodos para el análisis: uno para problemas isostáticos y otro general, aplicable tanto a problemas isostáticos como hiperestáticos. El primero determina de entrada la PLE, realizándose a continuación el cálculo por MEF-SNE de dicha pieza, que ahora está en régimen lineal. El general utiliza una homotopía que transforma de manera iterativa, unas leyes constitutivas lineales en las leyes no lineales del material. Cuando se combina con el MEF, la pieza lineal equivalente y la solución del problema original quedan determinadas al final de todo el proceso. Si bien el método general es un procedimiento próximo al de Newton- Raphson, presenta sobre éste la ventaja de permitir visualizar las deformaciones de la pieza en régimen no lineal, de manera tanto cualitativa como cuantitativa, ya que es posible observar en cada paso del proceso la modificación de rigideces (a flexión y cortante) y asimismo la evolución de las acciones ficticias. Por otra parte, los resultados obtenidos comparados con los publicados en la literatura, indican que el concepto PLE ofrece una forma directa y eficiente para analizar con muy buena precisión los problemas asociados a vigas y vigas-columna en las que por su tipología los efectos del cortante no pueden ser despreciados. ABSTRACT The structural concrete clearly remains the most used material in construction due to its strength, rigidity and structural design flexibility. The calculation of concrete structures using beams and beam-column is complex as consequence of the coupling phenomena between stresses and of its nonlinear behaviour. The models most commonly used for analysis are the Bernoulli-Euler and Timoshenko. The second model is strongly recommended when the relationship thickness/span is not small or in case the elements are heavily reinforced. The main objective of this thesis is to analyse the beam and beam-column elements with shear deformation in nonlinear regime, applying the concept of Equivalent Linear Structural Element (ELSE). This concept is basically to solve the problem of a structural element in nonlinear regime, transforming it into an equivalent linear structural element, so that both elements have the same deformations and the same stresses. Firstly, a comparative study of the various proposals of applying shear deformation, of various constitutive and sectional models of structural concrete, and of the nonlinear calculation methods (using finite element methods) was carried out. Considering that the resolution of nonlinear problem is based on solving the successive linear problem, using homotopy process, the linear problem of Timoshenko beam and beam-columns is resolved by FEM, using the exact nodal solutions (ENS) and equivalent distributed load of any order. Thus, the accurate solution approximation can be obtained with very few finite elements for not only nodes, but also for inside of elements. The concept ELSE is introduced to analyse a bar of nonlinear material, subjected to axial forces. The same bar is then used for other nonlinear beam and beam-column analysis with shear deformation. It is noted that, for the last analyses, the solution of a structural element in nonlinear regime is equal to that of linear regime, in which the piecewise-stiffness is constant, the moments and fictitious point loads need to be added at nodes of each element, as well as the fictitious distributed moment on element. Two methods have been developed for analysis: one for isostatic problem and other more general, applicable for both isostatic and hiperstatic problem. The first method determines the ELSE, and then the calculation of this piece is performed by FEM-ENS that now is in linear regime. The general method uses the homotopy that transforms iteratively linear constitutive laws into nonlinear laws of material. When combined with FEM, the ELSE and the solution of the original problem are determined at the end of the whole process. The general method is well known as a procedure closed to Newton-Raphson procedure but presents an advantage that allows displaying deformations of the piece in nonlinear regime, in both qualitative and quantitative way. Since it is possible to observe the modification of stiffness (flexural and shear) in each step of process and also the evolution of the fictitious actions. Moreover, the results compared with those published in the literature indicate that the ELSE concept offers a direct and efficient way to analyze with very good accuracy the problems associated with beams and beams columns in which, by typology, the effects of shear cannot be neglected.
Resumo:
We study solutions of the two-dimensional quasi-geostrophic thermal active scalar equation involving simple hyperbolic saddles. There is a naturally associated notion of simple hyperbolic saddle breakdown. It is proved that such breakdown cannot occur in finite time. At large time, these solutions may grow at most at a quadruple-exponential rate. Analogous results hold for the incompressible three-dimensional Euler equation.
Resumo:
Let E be a modular elliptic curve over ℚ, without complex multiplication; let p be a prime number where E has good ordinary reduction; and let F∞ be the field obtained by adjoining to ℚ all p-power division points on E. Write G∞ for the Galois group of F∞ over ℚ. Assume that the complex L-series of E over ℚ does not vanish at s = 1. If p ⩾ 5, we make a precise conjecture about the value of the G∞-Euler characteristic of the Selmer group of E over F∞. If one makes a standard conjecture about the behavior of this Selmer group as a module over the Iwasawa algebra, we are able to prove our conjecture. The crucial local calculations in the proof depend on recent joint work of the first author with R. Greenberg.
Resumo:
We discuss the relationship among certain generalizations of results of Hida, Ribet, and Wiles on congruences between modular forms. Hida’s result accounts for congruences in terms of the value of an L-function, and Ribet’s result is related to the behavior of the period that appears there. Wiles’ theory leads to a class number formula relating the value of the L-function to the size of a Galois cohomology group. The behavior of the period is used to deduce that a formula at “nonminimal level” is obtained from one at “minimal level” by dropping Euler factors from the L-function.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.