964 resultados para Ethernet distributed Data Acquisition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the basic tools to work with wireless sensors. TinyOShas a componentbased architecture which enables rapid innovation and implementation while minimizing code size as required by the severe memory constraints inherent in sensor networks. TinyOS's component library includes network protocols, distributed services, sensor drivers, and data acquisition tools ? all of which can be used asia or be further refined for a custom application. TinyOS was originally developed as a research project at the University of California Berkeley, but has since grown to have an international community of developers and users. Some algorithms concerning packet routing are shown. Incar entertainment systems can be based on wireless sensors in order to obtain information from Internet, but routing protocols must be implemented in order to avoid bottleneck problems. Ant Colony algorithms are really useful in such cases, therefore they can be embedded into the sensors to perform such routing task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a series of attempts to research and document relevant sloshing type phenomena, a series of experiments have been conducted. The aim of this paper is to describe the setup and data processing of such experiments. A sloshing tank is subjected to angular motion. As a result pressure registers are obtained at several locations, together with the motion data, torque and a collection of image and video information. The experimental rig and the data acquisition systems are described. Useful information for experimental sloshing research practitioners is provided. This information is related to the liquids used in the experiments, the dying techniques, tank building processes, synchronization of acquisition systems, etc. A new procedure for reconstructing experimental data, that takes into account experimental uncertainties, is presented. This procedure is based on a least squares spline approximation of the data. Based on a deterministic approach to the first sloshing wave impact event in a sloshing experiment, an uncertainty analysis procedure of the associated first pressure peak value is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EURATOM/CIEMAT and Technical University of Madrid (UPM) have been involved in the development of a FPSC [1] (Fast Plant System Control) prototype for ITER, based on PXIe (PCI eXtensions for Instrumentation). One of the main focuses of this project has been data acquisition and all the related issues, including scientific data archiving. Additionally, a new data archiving solution has been developed to demonstrate the obtainable performances and possible bottlenecks of scientific data archiving in Fast Plant System Control. The presented system implements a fault tolerant architecture over a GEthernet network where FPSC data are reliably archived on remote, while remaining accessible to be redistributed, within the duration of a pulse. The storing service is supported by a clustering solution to guaranty scalability, so that FPSC management and configuration may be simplified, and a unique view of all archived data provided. All the involved components have been integrated under EPICS [2] (Experimental Physics and Industrial Control System), implementing in each case the necessary extensions, state machines and configuration process variables. The prototyped solution is based on the NetCDF-4 [3] and [4] (Network Common Data Format) file format in order to incorporate important features, such as scientific data models support, huge size files management, platform independent codification, or single-writer/multiple-readers concurrency. In this contribution, a complete description of the above mentioned solution is presented, together with the most relevant results of the tests performed, while focusing in the benefits and limitations of the applied technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new-generation intelligent vehicle technologies will lead to a better level of road safety and CO2 emission reductions. However, the weak point of all these systems is their need for comprehensive and reliable data. For traffic data acquisition, two sources are currently available: 1) infrastructure sensors and 2) floating vehicles. The former consists of a set of fixed point detectors installed in the roads, and the latter consists of the use of mobile probe vehicles as mobile sensors. However, both systems still have some deficiencies. The infrastructure sensors retrieve information fromstatic points of the road, which are spaced, in some cases, kilometers apart. This means that the picture of the actual traffic situation is not a real one. This deficiency is corrected by floating cars, which retrieve dynamic information on the traffic situation. Unfortunately, the number of floating data vehicles currently available is too small and insufficient to give a complete picture of the road traffic. In this paper, we present a floating car data (FCD) augmentation system that combines information fromfloating data vehicles and infrastructure sensors, and that, by using neural networks, is capable of incrementing the amount of FCD with virtual information. This system has been implemented and tested on actual roads, and the results show little difference between the data supplied by the floating vehicles and the virtual vehicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La mayoría de las aplicaciones forestales del escaneo laser aerotransportado (ALS, del inglés airborne laser scanning) requieren la integración y uso simultaneo de diversas fuentes de datos, con el propósito de conseguir diversos objetivos. Los proyectos basados en sensores remotos normalmente consisten en aumentar la escala de estudio progresivamente a lo largo de varias fases de fusión de datos: desde la información más detallada obtenida sobre un área limitada (la parcela de campo), hasta una respuesta general de la cubierta forestal detectada a distancia de forma más incierta pero cubriendo un área mucho más amplia (la extensión cubierta por el vuelo o el satélite). Todas las fuentes de datos necesitan en ultimo termino basarse en las tecnologías de sistemas de navegación global por satélite (GNSS, del inglés global navigation satellite systems), las cuales son especialmente erróneas al operar por debajo del dosel forestal. Otras etapas adicionales de procesamiento, como la ortorectificación, también pueden verse afectadas por la presencia de vegetación, deteriorando la exactitud de las coordenadas de referencia de las imágenes ópticas. Todos estos errores introducen ruido en los modelos, ya que los predictores se desplazan de la posición real donde se sitúa su variable respuesta. El grado por el que las estimaciones forestales se ven afectadas depende de la dispersión espacial de las variables involucradas, y también de la escala utilizada en cada caso. Esta tesis revisa las fuentes de error posicional que pueden afectar a los diversos datos de entrada involucrados en un proyecto de inventario forestal basado en teledetección ALS, y como las propiedades del dosel forestal en sí afecta a su magnitud, aconsejando en consecuencia métodos para su reducción. También se incluye una discusión sobre las formas más apropiadas de medir exactitud y precisión en cada caso, y como los errores de posicionamiento de hecho afectan a la calidad de las estimaciones, con vistas a una planificación eficiente de la adquisición de los datos. La optimización final en el posicionamiento GNSS y de la radiometría del sensor óptico permitió detectar la importancia de este ultimo en la predicción de la desidad relativa de un bosque monoespecífico de Pinus sylvestris L. ABSTRACT Most forestry applications of airborne laser scanning (ALS) require the integration and simultaneous use of various data sources, pursuing a variety of different objectives. Projects based on remotely-sensed data generally consist in upscaling data fusion stages: from the most detailed information obtained for a limited area (field plot) to a more uncertain forest response sensed over a larger extent (airborne and satellite swath). All data sources ultimately rely on global navigation satellite systems (GNSS), which are especially error-prone when operating under forest canopies. Other additional processing stages, such as orthorectification, may as well be affected by vegetation, hence deteriorating the accuracy of optical imagery’s reference coordinates. These errors introduce noise to the models, as predictors displace from their corresponding response. The degree to which forest estimations are affected depends on the spatial dispersion of the variables involved and the scale used. This thesis reviews the sources of positioning errors which may affect the different inputs involved in an ALS-assisted forest inventory project, and how the properties of the forest canopy itself affects their magnitude, advising on methods for diminishing them. It is also discussed how accuracy should be assessed, and how positioning errors actually affect forest estimation, toward a cost-efficient planning for data acquisition. The final optimization in positioning the GNSS and optical image allowed to detect the importance of the latter in predicting relative density in a monospecific Pinus sylvestris L. forest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical power distribution and commercialization scenario is evolving worldwide, and electricity companies, faced with the challenge of new information requirements, are demanding IT solutions to deal with the smart monitoring of power networks. Two main challenges arise from data management and smart monitoring of power networks: real-time data acquisition and big data processing over short time periods. We present a solution in the form of a system architecture that conveys real time issues and has the capacity for big data management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many data streaming applications produces massive amounts of data that must be processed in a distributed fashion due to the resource limitation of a single machine. We propose a distributed data stream clustering protocol. Theoretical analysis shows preliminary results about the quality of discovered clustering. In addition, we present results about the ability to reduce the time complexity respect to the centralized approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los ataques a redes de información son cada vez más sofisticados y exigen una constante evolución y mejora de las técnicas de detección. Para ello, en este proyecto se ha diseñado e implementado una plataforma cooperativa para la detección de intrusiones basada en red. En primer lugar, se ha realizado un estudio teórico previo del marco tecnológico relacionado con este ámbito, en el que se describe y caracteriza el software que se utiliza para realizar ataques a sistemas (malware) así como los métodos que se utilizan para llegar a transmitir ese software (vectores de ataque). En el documento también se describen los llamados APT, que son ataques dirigidos con una gran inversión económica y temporal. Estos pueden englobar todos los malware y vectores de ataque existentes. Para poder evitar estos ataques, se estudiarán los sistemas de detección y prevención de intrusiones, describiendo brevemente los algoritmos que se tienden a utilizar en la actualidad. En segundo lugar, se ha planteado y desarrollado una plataforma en red dedicada al análisis de paquetes y conexiones para detectar posibles intrusiones. Este sistema está orientado a sistemas SCADA (Supervisory Control And Data Adquisition) aunque funciona sobre cualquier red IPv4/IPv6, para ello se definirá previamente lo que es un sistema SCADA, así como sus partes principales. Para implementar el sistema se han utilizado dispositivos de bajo consumo llamados Raspberry PI, estos se ubican entre la red y el equipo final que se quiera analizar. En ellos se ejecutan 2 aplicaciones desarrolladas de tipo cliente-servidor (la Raspberry central ejecutará la aplicación servidora y las esclavas la aplicación cliente) que funcionan de forma cooperativa utilizando la tecnología distribuida de Hadoop, la cual se explica previamente. Mediante esta tecnología se consigue desarrollar un sistema completamente escalable. La aplicación servidora muestra una interfaz gráfica que permite administrar la plataforma de análisis de forma centralizada, pudiendo ver así las alarmas de cada dispositivo y calificando cada paquete según su peligrosidad. El algoritmo desarrollado en la aplicación calcula el ratio de paquetes/tiempo que entran/salen del equipo final, procesando los paquetes y analizándolos teniendo en cuenta la información de señalización, creando diferentes bases de datos que irán mejorando la robustez del sistema, reduciendo así la posibilidad de ataques externos. Para concluir, el proyecto inicial incluía el procesamiento en la nube de la aplicación principal, pudiendo administrar así varias infraestructuras concurrentemente, aunque debido al trabajo extra necesario se ha dejado preparado el sistema para poder implementar esta funcionalidad. En el caso experimental actual el procesamiento de la aplicación servidora se realiza en la Raspberry principal, creando un sistema escalable, rápido y tolerante a fallos. ABSTRACT. The attacks to networks of information are increasingly sophisticated and demand a constant evolution and improvement of the technologies of detection. For this project it is developed and implemented a cooperative platform for detect intrusions based on networking. First, there has been a previous theoretical study of technological framework related to this area, which describes the software used for attacks on systems (malware) as well as the methods used in order to transmit this software (attack vectors). In this document it is described the APT, which are attacks directed with a big economic and time inversion. These can contain all existing malware and attack vectors. To prevent these attacks, intrusion detection systems and prevention intrusion systems will be discussed, describing previously the algorithms tend to use today. Secondly, a platform for analyzing network packets has been proposed and developed to detect possible intrusions in SCADA (Supervisory Control And Data Adquisition) systems. This platform is designed for SCADA systems (Supervisory Control And Data Acquisition) but works on any IPv4 / IPv6 network. Previously, it is defined what a SCADA system is and the main parts of it. To implement it, we used low-power devices called Raspberry PI, these are located between the network and the final device to analyze it. In these Raspberry run two applications client-server developed (the central Raspberry runs the server application and the slaves the client application) that work cooperatively using Hadoop distributed technology, which is previously explained. Using this technology is achieved develop a fully scalable system. The server application displays a graphical interface to manage analytics platform centrally, thereby we can see each device alarms and qualifying each packet by dangerousness. The algorithm developed in the application calculates the ratio of packets/time entering/leaving the terminal device, processing the packets and analyzing the signaling information of each packet, reating different databases that will improve the system, thereby reducing the possibility of external attacks. In conclusion, the initial project included cloud computing of the main application, being able to manage multiple concurrent infrastructure, but due to the extra work required has been made ready the system to implement this funcionality. In the current test case the server application processing is made on the main Raspberry, creating a scalable, fast and fault-tolerant system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente Tesis está orientada al análisis de la supervisión multidistribuida de tres procesos agroalimentarios: el secado solar, el transporte refrigerado y la fermentación de café, a través de la información obtenida de diferentes dispositivos de adquisición de datos, que incorporan sensores, así como el desarrollo de metodologías de análisis de series temporales, modelos y herramientas de control de procesos para la ayuda a la toma de decisiones en las operaciones de estos entornos. En esta tesis se han utilizado: tarjetas RFID (TemTrip®) con sistema de comunicación por radiofrecuencia y sensor de temperatura; el registrador (i-Button®), con sensor integrado de temperatura y humedad relativa y un tercer prototipo empresarial, módulo de comunicación inalámbrico Nlaza, que integra un sensor de temperatura y humedad relativa Sensirion®. Estos dispositivos se han empleado en la conformación de redes multidistribuidas de sensores para la supervisión de: A) Transportes de producto hortofrutícola realizados en condiciones comerciales reales, que son: dos transportes terrestre de producto de IV gama desde Murcia a Madrid; transporte multimodal (barco-barco) de limones desde Montevideo (Uruguay) a Cartagena (España) y transporte multimodal (barco-camión) desde Montevideo (Uruguay) a Verona (Italia). B) dos fermentaciones de café realizadas en Popayán (Colombia) en un beneficiadero. Estas redes han permitido registrar la dinámica espacio-temporal de temperaturas y humedad relativa de los procesos estudiados. En estos procesos de transporte refrigerado y fermentación la aplicación de herramientas de visualización de datos y análisis de conglomerados, han permitido identificar grupos de sensores que presentan patrones análogos de sus series temporales, caracterizando así zonas con dinámicas similares y significativamente diferentes del resto y permitiendo definir redes de sensores de menor densidad cubriendo las diferentes zonas identificadas. Las metodologías de análisis complejo de las series espacio-temporales (modelos psicrométricos, espacio de fases bidimensional e interpolaciones espaciales) permitieron la cuantificación de la variabilidad del proceso supervisado tanto desde el punto de vista dinámico como espacial así como la identificación de eventos. Constituyendo así herramientas adicionales de ayuda a la toma de decisiones en el control de los procesos. Siendo especialmente novedosa la aplicación de la representación bidimensional de los espacios de fases en el estudio de las series espacio-temporales de variables ambientales en aplicaciones agroalimentarias, aproximación que no se había realizado hasta el momento. En esta tesis también se ha querido mostrar el potencial de un sistema de control basado en el conocimiento experto como es el sistema de lógica difusa. Se han desarrollado en primer lugar, los modelos de estimación del contenido en humedad y las reglas semánticas que dirigen el proceso de control, el mejor modelo se ha seleccionado mediante un ensayo de secado realizado sobre bolas de hidrogel como modelo alimentario y finalmente el modelo se ha validado mediante un ensayo en el que se deshidrataban láminas de zanahoria. Los resultados sugirieron que el sistema de control desarrollado, es capaz de hacer frente a dificultades como las variaciones de temperatura día y noche, consiguiendo un producto con buenas características de calidad comparables a las conseguidas sin aplicar ningún control sobre la operación y disminuyendo así el consumo energético en un 98% con respecto al mismo proceso sin control. La instrumentación y las metodologías de análisis de datos implementadas en esta Tesis se han mostrado suficientemente versátiles y transversales para ser aplicadas a diversos procesos agroalimentarios en los que la temperatura y la humedad relativa sean criterios de control en dichos procesos, teniendo una aplicabilidad directa en el sector industrial ABSTRACT This thesis is focused on the analysis of multi-distributed supervision of three agri-food processes: solar drying, refrigerated transport and coffee fermentation, through the information obtained from different data acquisition devices with incorporated sensors, as well as the development of methodologies for analyzing temporary series, models and tools to control processes in order to help in the decision making in the operations within these environments. For this thesis the following has been used: RFID tags (TemTrip®) with a Radiofrequency ID communication system and a temperature sensor; the recorder (i-Button®), with an integrated temperature and relative humidity and a third corporate prototype, a wireless communication module Nlaza, which has an integrated temperature and relative humidity sensor, Sensirion®. These devices have been used in creating three multi-distributed networks of sensors for monitoring: A) Transport of fruits and vegetables made in real commercial conditions, which are: two land trips of IV range products from Murcia to Madrid; multimodal transport (ship - ship) of lemons from Montevideo (Uruguay) to Cartagena (Spain) and multimodal transport (ship - truck) from Montevideo (Uruguay) to Verona (Italy). B) Two coffee fermentations made in Popayan (Colombia) in a coffee processing plant. These networks have allowed recording the time space dynamics of temperatures and relative humidity of the processed under study. Within these refrigerated transport and fermentation processes, the application of data display and cluster analysis tools have allowed identifying sensor groups showing analogical patterns of their temporary series; thus, featuring areas with similar and significantly different dynamics from the others and enabling the definition of lower density sensor networks covering the different identified areas. The complex analysis methodologies of the time space series (psychrometric models, bi-dimensional phase space and spatial interpolation) allowed quantifying the process variability of the supervised process both from the dynamic and spatial points of view; as well as the identification of events. Thus, building additional tools to aid decision-making on process control brought the innovative application of the bi-dimensional representation of phase spaces in the study of time-space series of environmental variables in agri-food applications, an approach that had not been taken before. This thesis also wanted to show the potential of a control system based on specialized knowledge such as the fuzzy logic system. Firstly, moisture content estimation models and semantic rules directing the control process have been developed, the best model has been selected by an drying assay performed on hydrogel beads as food model; and finally the model has been validated through an assay in which carrot sheets were dehydrated. The results suggested that the control system developed is able to cope with difficulties such as changes in temperature daytime and nighttime, getting a product with good quality features comparable to those features achieved without applying any control over the operation and thus decreasing consumption energy by 98% compared to the same uncontrolled process. Instrumentation and data analysis methodologies implemented in this thesis have proved sufficiently versatile and cross-cutting to apply to several agri-food processes in which the temperature and relative humidity are the control criteria in those processes, having a direct effect on the industry sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La seguridad y fiabilidad de los procesos industriales son la principal preocupación de los ingenieros encargados de las plantas industriales. Por lo tanto, desde un punto de vista económico, el objetivo principal es reducir el costo del mantenimiento, el tiempo de inactividad y las pérdidas causadas por los fallos. Por otra parte, la seguridad de los operadores, que afecta a los aspectos sociales y económicos, es el factor más relevante a considerar en cualquier sistema Debido a esto, el diagnóstico de fallos se ha convertido en un foco importante de interés para los investigadores de todo el mundo e ingenieros en la industria. Los principales trabajos enfocados en detección de fallos se basan en modelos de los procesos. Existen diferentes técnicas para el modelado de procesos industriales tales como máquinas de estado, árboles de decisión y Redes de Petri (RdP). Por lo tanto, esta tesis se centra en el modelado de procesos utilizando redes de petri interpretadas. Redes de Petri es una herramienta usada en el modelado gráfico y matemático con la habilidad para describir información de los sistemas de una manera concurrente, paralela, asincrona, distribuida y no determinística o estocástica. RdP son también una herramienta de comunicación visual gráfica útil como lo son las cartas de flujo o diagramas de bloques. Adicionalmente, las marcas de las RdP simulan la dinámica y concurrencia de los sistemas. Finalmente, ellas tienen la capacidad de definir ecuaciones de estado específicas, ecuaciones algebraicas y otros modelos que representan el comportamiento común de los sistemas. Entre los diferentes tipos de redes de petri (Interpretadas, Coloreadas, etc.), este trabajo de investigación trata con redes de petri interpretadas principalmente debido a características tales como sincronización, lugares temporizados, aparte de su capacidad para procesamiento de datos. Esta investigación comienza con el proceso para diseñar y construir el modelo y diagnosticador para detectar fallos definitivos, posteriormente, la dinámica temporal fue adicionada para detectar fallos intermitentes. Dos procesos industriales, concretamente un HVAC (Calefacción, Ventilación y Aire Acondicionado) y un Proceso de Envasado de Líquidos fueron usados como banco de pruebas para implementar la herramienta de diagnóstico de fallos (FD) creada. Finalmente, su capacidad de diagnóstico fue ampliada en orden a detectar fallos en sistemas híbridos. Finalmente, un pequeño helicóptero no tripulado fue elegido como ejemplo de sistema donde la seguridad es un desafío, y las técnicas de detección de fallos desarrolladas en esta tesis llevan a ser una herramienta valorada, desde que los accidentes de las aeronaves no tripuladas (UAVs) envuelven un alto costo económico y son la principal razón para introducir restricciones de volar sobre áreas pobladas. Así, este trabajo introduce un proceso sistemático para construir un Diagnosticador de Fallos del sistema mencionado basado en RdR Esta novedosa herramienta es capaz de detectar fallos definitivos e intermitentes. El trabajo realizado es discutido desde un punto de vista teórico y práctico. El procedimiento comienza con la división del sistema en subsistemas para seguido integrar en una RdP diagnosticadora global que es capaz de monitorear el sistema completo y mostrar las variables críticas al operador en orden a determinar la salud del UAV, para de esta manera prevenir accidentes. Un Sistema de Adquisición de Datos (DAQ) ha sido también diseñado para recoger datos durante los vuelos y alimentar la RdP diagnosticadora. Vuelos reales realizados bajo condiciones normales y de fallo han sido requeridos para llevar a cabo la configuración del diagnosticador y verificar su comportamiento. Vale la pena señalar que un alto riesgo fue asumido en la generación de fallos durante los vuelos, a pesar de eso esto permitió recoger datos básicos para desarrollar el diagnóstico de fallos, técnicas de aislamiento, protocolos de mantenimiento, modelos de comportamiento, etc. Finalmente, un resumen de la validación de resultados obtenidos durante las pruebas de vuelo es también incluido. Un extensivo uso de esta herramienta mejorará los protocolos de mantenimiento para UAVs (especialmente helicópteros) y permite establecer recomendaciones en regulaciones. El uso del diagnosticador usando redes de petri es considerado un novedoso enfoque. ABSTRACT Safety and reliability of industrial processes are the main concern of the engineers in charge of industrial plants. Thus, from an economic point of view, the main goal is to reduce the maintenance downtime cost and the losses caused by failures. Moreover, the safety of the operators, which affects to social and economic aspects, is the most relevant factor to consider in any system. Due to this, fault diagnosis has become a relevant focus of interest for worldwide researchers and engineers in the industry. The main works focused on failure detection are based on models of the processes. There are different techniques for modelling industrial processes such as state machines, decision trees and Petri Nets (PN). Thus, this Thesis is focused on modelling processes by using Interpreted Petri Nets. Petri Nets is a tool used in the graphic and mathematical modelling with ability to describe information of the systems in a concurrent, parallel, asynchronous, distributed and not deterministic or stochastic manner. PNs are also useful graphical visual communication tools as flow chart or block diagram. Additionally, the marks of the PN simulate the dynamics and concurrence of the systems. Finally, they are able to define specific state equations, algebraic equations and other models that represent the common behaviour of systems. Among the different types of PN (Interpreted, Coloured, etc.), this research work deals with the interpreted Petri Nets mainly due to features such as synchronization capabilities, timed places, apart from their capability for processing data. This Research begins with the process for designing and building the model and diagnoser to detect permanent faults, subsequently, the temporal dynamic was added for detecting intermittent faults. Two industrial processes, namely HVAC (Heating, Ventilation and Air Condition) and Liquids Packaging Process were used as testbed for implementing the Fault Diagnosis (FD) tool created. Finally, its diagnostic capability was enhanced in order to detect faults in hybrid systems. Finally, a small unmanned helicopter was chosen as example of system where safety is a challenge and fault detection techniques developed in this Thesis turn out to be a valuable tool since UAVs accidents involve high economic cost and are the main reason for setting restrictions to fly over populated areas. Thus, this work introduces a systematic process for building a Fault Diagnoser of the mentioned system based on Petri Nets. This novel tool is able to detect both intermittent and permanent faults. The work carried out is discussed from theoretical and practical point of view. The procedure begins with a division of the system into subsystems for further integration into a global PN diagnoser that is able to monitor the whole system and show critical variables to the operator in order to determine the UAV health, preventing accidents in this manner. A Data Acquisition System (DAQ) has been also designed for collecting data during the flights and feed PN Diagnoser. Real flights carried out under nominal and failure conditions have been required to perform the diagnoser setup and verify its performance. It is worth noting that a high risk was assumed in the generation of faults during the flights, nevertheless this allowed collecting basic data so as to develop fault diagnosis, isolations techniques, maintenance protocols, behaviour models, etc. Finally, a summary of the validation results obtained during real flight tests is also included. An extensive use of this tool will improve preventive maintenance protocols for UAVs (especially helicopters) and allow establishing recommendations in regulations. The use of the diagnoser by using Petri Nets is considered as novel approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irrigated agriculture is usually performed in semi-arid regions despite scarcity of water resources. Therefore, optimal irrigation management by monitoring the soil is essential, and assessing soil hydraulic properties and water flow dynamics is presented as a first measure. For this purpose, the control of volumetric water content, θ, and pressure head, h, is required. This study adopted two types of monitoring strategies in the same experimental plot to control θ and h in the vadose zone: i) non-automatic and more time-consuming; ii) automatic connected to a datalogger. Water flux was modelled with Hydrus-1D using the data collected from both acquisition strategies independently (3820 daily values for the automatic; less than 1000 for the non-automatic). Goodness-of-fit results reported a better adjustment in case of automatic sensors. Both model outputs adequately predicted the general trend of θ and h, but with slight differences in computed annual drainage (711 mm and 774 mm). Soil hydraulic properties were inversely estimated from both data acquisition systems. Major differences were obtained in the saturated volumetric water content, θs, and the n and α van Genuchten model shape parameters. Saturated hydraulic conductivity, Ks, shown lower variability with a coefficient of variation range from 0.13 to 0.24 for the soil layers defined. Soil hydraulic properties were better assessed through automatic data acquisition as data variability was lower and accuracy was higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LIDAR (LIght Detection And Ranging) first return elevation data of the Boston, Massachusetts region from MassGIS at 1-meter resolution. This LIDAR data was captured in Spring 2002. LIDAR first return data (which shows the highest ground features, e.g. tree canopy, buildings etc.) can be used to produce a digital terrain model of the Earth's surface. This dataset consists of 74 First Return DEM tiles. The tiles are 4km by 4km areas corresponding with the MassGIS orthoimage index. This data set was collected using 3Di's Digital Airborne Topographic Imaging System II (DATIS II). The area of coverage corresponds to the following MassGIS orthophoto quads covering the Boston region (MassGIS orthophoto quad ID: 229890, 229894, 229898, 229902, 233886, 233890, 233894, 233898, 233902, 233906, 233910, 237890, 237894, 237898, 237902, 237906, 237910, 241890, 241894, 241898, 241902, 245898, 245902). The geographic extent of this dataset is the same as that of the MassGIS dataset: Boston, Massachusetts Region 1:5,000 Color Ortho Imagery (1/2-meter Resolution), 2001 and was used to produce the MassGIS dataset: Boston, Massachusetts, 2-Dimensional Building Footprints with Roof Height Data (from LIDAR data), 2002 [see cross references].