996 resultados para Ethanol electro-oxidation
Resumo:
Exfoliated graphite (EG) was modified by covalently attaching dopamine (DA) (3,4-dihydroxyphenethylamine) through amide linkages, using -COOH groups introduced on the EG surface. The modified material was characterized by FT-IR spectroscopy, Xray photoelectron spectroscopy and electrochemical techniques. Composites of DA modified EG dispersed in organically modified silicates were prepared by a sol-get process. Electrodes were fabricated by casting the composites in glass tubes. The sol-gel based electrodes were found to be active for the electrocatalytic oxidation of NADH and biosensing of ethanol in presence of NAD(+) and alcohol dehydrogenase enzyme. The modified composite electrodes were found to be stable for several months. The surface of the electrode could be renewed just by mechanically polishing the electrode using emery sheets. The modified EG was also pressed and restacked in the form of a pellet and the use of this material as a binderless bulk-modified electrode was also demonstrated. The performance of sol-gel derived composite EG electrodes with binderless bulk-modified EG electrodes was compared. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Here, we report the clean and facile synthesis of Pt and Pd nanoparticles decorated on reduced graphene oxide (rGO) by the simultaneous reduction of graphene oxide (GO) and the metal ions in Mg/acid medium. As-generated Pt and Pd nanoparticles serve as a heterogeneous catalyst for the further reduction of the rGO by the hydrogen spill-over process. The C/O ratio is much higher as compared to the rGO obtained by the reduction of GO by only Mg/acid. Overall, the process is rapid, facile and green that does not require any toxic chemical agent or any rigorous chemical reactions. We perform the catalytic reduction of 4-nitophenol (4-NP) to 4-aminophenol (4-AP) at room temperature by Pd@rGO and Pt@rGO. The reduction is complete within 35 s for Pd@rGO and 60 s for Pt@rGO when 50 mu g of hybrid catalyst is used for 0.5 ml of 1 mM of 4-NP. In case of ethanol oxidation, the current density for Pd@rGO is comparable to commercial Pt/C but is doubled for Pt@rGO. Overall, both structures show highly stable catalytic activity compared to commercial Pt/C. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Pd2Ge nanoparticles were synthesized by superhydride reduction of K2PdCl4 and GeCl4. The syntheses were performed using a solvothermal method in the absence of surfactants, and the size of the nanoparticles was controlled by varying the reaction time. The powder X-ray diffraction (PXRD) and transmission electron microscopy data suggest that Pd2Ge nanoparticles were formed as an ordered intermetallic phase. In the crystal structure, Pd and Ge atoms occupy two different crystallographic positions with a vacancy in one of the Ge sites, which was proved by PXRD and energy-dispersive X-ray analysis. The catalyst is highly efficient for the electrochemical oxidation of ethanol and is stable up to the 250th cycle in alkaline medium. The electrochemical active surface area and current density values obtained, 1.41 cm(2) and 4.1 mA cm(-2), respectively, are superior to those of the commercial Pd on carbon. The experimentally observed data were interpreted in terms of the combined effect of adsorption energies of CH3CO and OH radical, d-band center model, and work function of the corresponding catalyst surfaces.
Resumo:
The paper studies the direct oxidation of ethanol and CO on PdO/Ce0.75Zr0.25O2 and Ce(0.75)Zr(0.2)5O(2) catalysts. Characterization of catalysts is carried out by temperature-programmed desorption (TPD), temperature-programmed surface reaction (TPSR) techniques to correlate with catalytic properties and the effect of supports on PdO. The simple Ce0.75Zr0.25O2 is in less active for ethanol and CO oxidation. After loaded with PdO, the catalytic activity enhances effectively. Combined the ethanol and CO oxidation activity with CO-TPD and ethanol-TPSR profiles, we can find the more intensive of CO2 desorption peaks, the higher it is for the oxidation of CO and ethanol. Conversion versus yield plot shows the acetaldehyde is the primary product, the secondary products are acetic acid, ethyl acetate and ethylene, and the final product is CO2. A simplified reaction scheme (not surface mechanism) is suggested that ethanol is first oxidized to form intermediate of acetaldehyde, then acetic acid, ethyl acetate and ethylene formed going with the formation of acetaldehyde, acetic acid, ethyl acetate; finally these byproducts are further oxidized to produce CO2. PdO/Ce0.75Zr0.25O2 catalyst has much higher catalytic activity not only for the oxidation of ethanol but also for CO oxidation. Thus the CO poison effect on PdO/Ce0.75Zr0.25O2 catalysts can be decreased and they have the feasibility for application in direct alcohol fuel cell (DAFC) with high efficiency.
Resumo:
Laurencia terpenoid extract (LET) had been extracted from the red alga Laurencia tristicha. The study is to investigate the effects of LET supplementation on DNA oxidation and alkylation damages in mice. Forty healthy kunming mice weighing between 18g and 25g were randomly assigned into 4 groups, each consisting of ten animals. The mice were orally intubated respectively for 60 days with the designed concentrations of LET (25, 50, 100 mg/kg b.w.) for three exposed groups and salad oil (0.2 ml) for the blank group. Food and water were free for the animals. Mice in the blank and exposed groups were sacrificed after the last treatment and the blood of each animal was quickly taken for further experiments. The spontaneous and oxidized DNA damages of peripheral lymphocytes induced by H2O2 were analysed by SCGE. O-6-Methy-guanine (O-6-MeG) was measured by high performance capillary zone electrophoresis. There was no significantly difference in DNA spontaneous damage on peripheral lymphocytes of all the mice. The oxidative DNA damage in the 50 mg/Kg body weight supplement group are 286AU with the oxidation of 10 mu mol/L H2O2, significantly lower than the blank group 332AU (p<0.05). The contents of O-6-MeG in plasma in the 50mg/kg b.w. and 100mg/kg b.w. supplement group were 1.50 mu mol/L andl.88 mu mol/L, significantly lower than that of the blank group, which was 2.89 mu mol/L(p<0.05). The results from the present study indicated that the LET were rich in terpenoids and safety to be taken orally and it could improve antioxidative and decrease DNA damage effectively.
Resumo:
The structural features and catalytic properties of Pt-Sn/CeO2 catalysts prepared by modified polyol method were extensively investigated for the complete oxidation of ethanol. CO chemisorption, TPR, DTA and XPS measurements identically indicated that the electronic configuration of Pt by Sn as well as the formation of PtSn alloy were the key factors in determining the nature of the active sites, A strong Pt/Sn atomic ratio dependence of catalytic perfortmances was observed. which was explained in terms of the change., in the Surface structure of metal phases and the electronic Pt-Sn interaction. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The ethanol oxidation reaction (EOR) was investigated using PtSnCe/C electrocatalysts in different mass ratios (72:23:5, 68:22:10 and 64:21:15) that were prepared by the polymeric precursor method. Transmission electron microscopy (TEM) showed that the particles ranged in size from approximately 2 to 5 nm. Changes in the net parameters observed for Pt suggest the incorporation of Sn and Ce into the Pt crystalline network with the formation of an alloy between Pt, Sn and/or Ce. Among the PtSnCe catalysts investigated, the 68:22:10 composition showed the highest activity toward ethanol oxidation, and the current time curves obtained in the presence of ethanol in acidic media showed a current density 50% higher than that observed for commercial PtSn/C (E-Tek). During the experiments performed on single direct ethanol fuel cells, the power density for the PtSnCe/C 68:22:10 anode was nearly 40% higher than the one obtained using the commercial catalyst. Data from Fourier transform infrared (FTIR) spectroscopy showed that the observed behavior for ethanol oxidation may be explained in terms of a double mechanism. The presence of Sn and Ce seems to favor CO oxidation, since they produce an oxygen-containing species to oxidize acetaldehyde to acetic acid. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a study on the ethanol oxidation reaction using SnO(2)@Pt/C core-shell structures as electrocatalysts. All the materials used, including Pt/C and PtSn/C E-tek, were 20% (w/w) metal on carbon. The formation of core-shell nanoparticles (SnO(2)@Pt/C) was measured by UV-vis spectrophotometry. X-ray diffraction measurements showed Pt (shell) diffraction patterns without influence from the SnO(2) core and without any shift in 2 theta values for Pt. The diameters of the core-shell particle structures, measured using high-resolution transmission electron microscopy images, were in the range of 3-16 nm. The electrochemical profile for SnO(2)@Pt/C in an acidic medium (H(2)SO(4) at a concentration of 0.5 mol L(-1)) was almost the same as the typical electrochemical behavior for Pt in an acidic medium. Furthermore, the onset potential for the ethanol oxidation reaction using SnO(2)@Pt/C was almost the same as that for PtSn/C E-tek (0.23 V versus the reversible hydrogen electrode). However, the mass current peak densities for ethanol oxidation were 50% higher on SnO(2)@Pt/C than on PtSn/C E-tek. In the polarization curve, the mass current density for ethanol oxidation was higher at all potentials for SnO(2)@Pt/C when compared to Pt/C and PtSn/C E-tek. At 0.5 V, the current mass density for ethanol oxidation on SnO(2)@Pt was 2.3 times of that for the same process on the commercial material. The electrocatalytic activity of SnO(2)@Pt/C for ethanol oxidation was associated with an increase in the electrochemically active surface area. However, an electronic effect should also be considered because the Pt shell changes its electronic structure in the presence of the foreign core. (C) 2010 Elsevier B.V. All rights reserved.
Ethanol oxidation reaction on PtCeO(2)/C electrocatalysts prepared by the polymeric precursor method
Resumo:
This paper presents a study of the electrocatalysis of ethanol oxidation reactions in an acidic medium on Pt-CeO(2)/C (20 wt.% of Pt-CeO(2) on carbon XC-72R), prepared in different mass ratios by the polymeric precursor method. The mass ratios between Pt and CeO(2) (3:1, 2:1, 1:1, 1:2, 1:3) were confirmed by Energy Dispersive X-ray Analysis (EDAX). X-ray diffraction (XRD) structural characterization data shows that the Pt-CeO(2)/C catalysts are composed of nanosized polycrystalline non-alloyed deposits, from which reflections corresponding to the fcc (Pt) and fluorite (CeO(2)) structures were clearly observed. The mean crystallite sizes calculated from XRD data revealed that, independent of the mass ratio, a value close to 3 nm was obtained for the CeO(2) particles. For Pt, the mean crystallite sizes were dependent on the ratio of this metal in the catalysts. Low platinum ratios resulted in small crystallites. and high Pt proportions resulted in larger crystallites. The size distributions of the catalysts particles, determined by XRD, were confirmed by Transmission Electron Microscope (TEM) imaging. Cyclic voltammetry and chronoamperometic experiments were used to evaluate the electrocatalytic performance of the different materials. In all cases, except Pt-CeO(2)/C 1:1, the Pt-Ceo(2)/C catalysts exhibited improved performance when compared with Pt/C. The best result was obtained for the Pt-CeO(2)/C 1:3 catalyst, which gave better results than the Pt-Ru/C (Etek) catalyst. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The preparation of superparamagnetic magnetite (Fe(3)O(4)) nanoparticles by electro-precipitation in ethanol is proposed. Particle average size can be set from 4.4 to 9 nm with a standard deviation around 20%. Combination of wide-angle X-ray scattering (WAXS), Electron energy loss spectroscopy (EELS) and Mossbauer spectroscopy characterizations clearly identifies the particles as magnetite single-crystals (Fe(3)O(4)). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)