948 resultados para Estimation of bacteria
Resumo:
A rapid and sensitive method is described to quantitatively compare tRNA pools for individual aminoacids in a single experiment. The procedure comprises of: (i) charging of total tRNA with a mixture of radiolabeled aminoacids, (ii) deacylation of the esterified tRNA with a volatile base and the recovery of the labeled aminoacid, (iii) derivatisation of the aminoacid with phenylisothiocyanate after mixing with excess of nonradioactive aminoacids, (iv) baseline separation of the phenylthiocarbamyl aminoacids by reverse phase high performance liquid chromatography monitored by A254nm and (v) quantitation of the radioactivity in individual aminoacid peaks. The radioactivity in the aminoacid peak corresponds to the quantity of the aminoacylated tRNA. The method has been successfully applied to quantitate the individual tRNA pools in the developing silk glands of Bombyx mori, a functionally adapted tissue which undergoes considerable variations in tRNA content. PSG, posterior silk gland; PITC, phenylisothiocyanate; DMAA, N,N-dimethyl-N-allylamine; APH, algal protein hydrolysate; ptc-, phenylthiocarbamyl; HPLC, high performance liquid chromatography.
Resumo:
An experimental technique is proposed for the estimation of crack length as well as crack closure/opening stress during fatigue crack growth. A specially designed, single cantilever, crack opening displacement gauge is used to monitor these variables during fatigue crack propagation testing. The technique was experimentally validated through electronfractography.
Resumo:
This paper presents an approach for dynamic state estimation of aggregated generators by introducing a new correction factor for equivalent inter-area power flows. The spread of generators from the center of inertia of each area is summarized by the correction term α on the equivalent power flow between the areas and is applied to the identification and estimation process. A nonlinear time varying Kalman filter is applied to estimate the equivalent angles and velocities of coherent areas by reducing the effect of local modes on the estimated states. The approach is simulated on two test systems and the results show the effect of the correction factor and the performance of the state estimation by estimating the inter-area dynamics of the system.
Resumo:
The fatigue and fracture performance of a cracked plate can be substantially improved by providing patches as reinforcements. The effectiveness of the patches is related to the reduction they cause in the stress intensity factor (SIF) of the crack. So, for reliable design, one needs an accurate evaluation of the SIF in terms of the crack, patch and adhesive parameters. In this investigation, a centrally cracked large plate with a pair of symmetric bonded narrow patches, oriented normally to the crack line, is analysed by a continuum approach. The narrow patches are treated as transversely flexible line members. The formulation leads to an integral equation which is solved numerically using point collocation. The convergence is rapid. It is found that substantial reductions in SIF are possible with practicable patch dimensions and locations. The patch is more effective when placed on the crack than ahead of the crack. The present analysis indicates that a little distance inwards of the crack tip, not the crack tip itself, is the ideal location, for the patch.
Resumo:
A quantitative expression has been obtained for the equivalent resistance of an internal short in rechargeable cells under constant voltage charging.
Resumo:
We present a unified approach to repulsion in ionic and van der Waals solids based on a compressible-ion/atom model. Earlier studies have shown that repulsion in ionic crystals can be viewed as arising from the compression energy of ions, described by two parameters per ion. Here we obtain the compression parameters of the rare-gas atoms Ne. Ar. Kr and Xe by interpolation using the known parameters of related equi-electronic ions (e.g. Ar from S2-. Cl-, K- and Ca2-). These parameters fit the experimental zero-temperature interatomic distances and compressibilities of the rare-gas crystals satisfactorily. A hightemperature equation of state based on an Einstein model of thermal motions is used to calculate the thermal expansivities, compressibilities and their temperature derivatives for Ar. Kr and Xe. It is argued that an instability at higher temperatures represents the limit to which the solid can be superheated. beyond which sublimation must occur.
Resumo:
N6-({Delta}2-Isopentenyl) adenosine antibodies were used for the isolation of free cytokinins and cytokinin-containing tRNAs from parts of Cucumis sativus L. var. Guntur seedlings and for the estimation of cytokinins in them. Immobilized N6-({Delta}2-isopentenyl) adenosine antibodies retained tRNAs containing N6-({Delta}2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine with equal efficiencies. There were at least five cytokinins in the free form in cucumber seedlings. N6-(4-Hydroxy-3-methylbut-2-enyl) adenosine, N6-({Delta}2-isopentenyl) adenosine, and N6-({Delta}2-isopentenyl) adenine were present at least to the extent of 80, 23, and 9 nanograms, respectively, in the cotyledons and 40, 6, and 3 nanograms, respectively, in the decotyledonated seedlings per gram of tissue. Only two cytokinins were found in the tRNAs of cucumber cotyledons, namely N6-({Delta}2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine in amounts of 12 and 318 nanograms, respectively, per gram of tissue. Immunoaffinity chromatographic analysis of radiolabeled aminoacyl tRNAs from cucumber cotyledons showed that tRNAPhe and tRNATyr contained cytokinins whereas tRNAAla did not.
Resumo:
Anticipating the number and identity of bidders has significant influence in many theoretical results of the auction itself and bidders’ bidding behaviour. This is because when a bidder knows in advance which specific bidders are likely competitors, this knowledge gives a company a head start when setting the bid price. However, despite these competitive implications, most previous studies have focused almost entirely on forecasting the number of bidders and only a few authors have dealt with the identity dimension qualitatively. Using a case study with immediate real-life applications, this paper develops a method for estimating every potential bidder’s probability of participating in a future auction as a function of the tender economic size removing the bias caused by the contract size opportunities distribution. This way, a bidder or auctioner will be able to estimate the likelihood of a specific group of key, previously identified bidders in a future tender.
Resumo:
Abstract of Macbeth, G. M., Broderick, D., Buckworth, R. & Ovenden, J. R. (In press, Feb 2013). Linkage disequilibrium estimation of effective population size with immigrants from divergent populations: a case study on Spanish mackerel (Scomberomorus commerson). G3: Genes, Genomes and Genetics. Estimates of genetic effective population size (Ne) using molecular markers are a potentially useful tool for the management of endangered through to commercial species. But, pitfalls are predicted when the effective size is large, as estimates require large numbers of samples from wild populations for statistical validity. Our simulations showed that linkage disequilibrium estimates of Ne up to 10,000 with finite confidence limits can be achieved with sample sizes around 5000. This was deduced from empirical allele frequencies of seven polymorphic microsatellite loci in a commercially harvested fisheries species, the narrow barred Spanish mackerel (Scomberomorus commerson). As expected, the smallest standard deviation of Ne estimates occurred when low frequency alleles were excluded. Additional simulations indicated that the linkage disequilibrium method was sensitive to small numbers of genotypes from cryptic species or conspecific immigrants. A correspondence analysis algorithm was developed to detect and remove outlier genotypes that could possibly be inadvertently sampled from cryptic species or non-breeding immigrants from genetically separate populations. Simulations demonstrated the value of this approach in Spanish mackerel data. When putative immigrants were removed from the empirical data, 95% of the Ne estimates from jacknife resampling were above 24,000.
Resumo:
This thesis examines the feasibility of a forest inventory method based on two-phase sampling in estimating forest attributes at the stand or substand levels for forest management purposes. The method is based on multi-source forest inventory combining auxiliary data consisting of remote sensing imagery or other geographic information and field measurements. Auxiliary data are utilized as first-phase data for covering all inventory units. Various methods were examined for improving the accuracy of the forest estimates. Pre-processing of auxiliary data in the form of correcting the spectral properties of aerial imagery was examined (I), as was the selection of aerial image features for estimating forest attributes (II). Various spatial units were compared for extracting image features in a remote sensing aided forest inventory utilizing very high resolution imagery (III). A number of data sources were combined and different weighting procedures were tested in estimating forest attributes (IV, V). Correction of the spectral properties of aerial images proved to be a straightforward and advantageous method for improving the correlation between the image features and the measured forest attributes. Testing different image features that can be extracted from aerial photographs (and other very high resolution images) showed that the images contain a wealth of relevant information that can be extracted only by utilizing the spatial organization of the image pixel values. Furthermore, careful selection of image features for the inventory task generally gives better results than inputting all extractable features to the estimation procedure. When the spatial units for extracting very high resolution image features were examined, an approach based on image segmentation generally showed advantages compared with a traditional sample plot-based approach. Combining several data sources resulted in more accurate estimates than any of the individual data sources alone. The best combined estimate can be derived by weighting the estimates produced by the individual data sources by the inverse values of their mean square errors. Despite the fact that the plot-level estimation accuracy in two-phase sampling inventory can be improved in many ways, the accuracy of forest estimates based mainly on single-view satellite and aerial imagery is a relatively poor basis for making stand-level management decisions.
Resumo:
Background A pandemic strain of influenza A spread rapidly around the world in 2009, now referred to as pandemic (H1N1) 2009. This study aimed to examine the spatiotemporal variation in the transmission rate of pandemic (H1N1) 2009 associated with changes in local socio-environmental conditions from May 7–December 31, 2009, at a postal area level in Queensland, Australia. Method We used the data on laboratory-confirmed H1N1 cases to examine the spatiotemporal dynamics of transmission using a flexible Bayesian, space–time, Susceptible-Infected-Recovered (SIR) modelling approach. The model incorporated parameters describing spatiotemporal variation in H1N1 infection and local socio-environmental factors. Results The weekly transmission rate of pandemic (H1N1) 2009 was negatively associated with the weekly area-mean maximum temperature at a lag of 1 week (LMXT) (posterior mean: −0.341; 95% credible interval (CI): −0.370–−0.311) and the socio-economic index for area (SEIFA) (posterior mean: −0.003; 95% CI: −0.004–−0.001), and was positively associated with the product of LMXT and the weekly area-mean vapour pressure at a lag of 1 week (LVAP) (posterior mean: 0.008; 95% CI: 0.007–0.009). There was substantial spatiotemporal variation in transmission rate of pandemic (H1N1) 2009 across Queensland over the epidemic period. High random effects of estimated transmission rates were apparent in remote areas and some postal areas with higher proportion of indigenous populations and smaller overall populations. Conclusions Local SEIFA and local atmospheric conditions were associated with the transmission rate of pandemic (H1N1) 2009. The more populated regions displayed consistent and synchronized epidemics with low average transmission rates. The less populated regions had high average transmission rates with more variations during the H1N1 epidemic period.
Resumo:
Standards have been placed to regulate the microbial and preservative contents to assure that foods are safe to the consumer. In a case of a food-related disease outbreak, it is crucial to be able to detect and identify quickly and accurately the cause of the disease. In addition, for every day control of food microbial and preservative contents, the detection methods must be easily performed for numerous food samples. In this present study, quicker alternative methods were studied for identification of bacteria by DNA fingerprinting. A flow cytometry method was developed as an alternative to pulsed-field gel electrophoresis, the golden method . DNA fragment sizing by an ultrasensitive flow cytometer was able to discriminate species and strains in a reproducible and comparable manner to pulsed-field gel electrophoresis. This new method was hundreds times faster and 200,000 times more sensitive. Additionally, another DNA fingerprinting identification method was developed based on single-enzyme amplified fragment length polymorphism (SE-AFLP). This method allowed the differentiation of genera, species, and strains of pathogenic bacteria of Bacilli, Staphylococci, Yersinia, and Escherichia coli. These fingerprinting patterns obtained by SE-AFLP were simpler and easier to analyze than those by the traditional amplified fragment length polymorphism by double enzyme digestion. Nisin (E234) is added as a preservative to different types of foods, especially dairy products, around the world. Various detection methods exist for nisin, but they lack in sensitivity, speed or specificity. In this present study, a sensitive nisin-induced green fluorescent protein (GFPuv) bioassay was developed using the Lactococcus lactis two-component signal system NisRK and the nisin-inducible nisA promoter. The bioassay was extremely sensitive with detection limit of 10 pg/ml in culture supernatant. In addition, it was compatible for quantification from various food matrices, such as milk, salad dressings, processed cheese, liquid eggs, and canned tomatoes. Wine has good antimicrobial properties due to its alcohol concentration, low pH, and organic content and therefore often assumed to be microbially safe to consume. Another aim of this thesis was to study the microbiota of wines returned by customers complaining of food-poisoning symptoms. By partial 16S rRNA gene sequence analysis, ribotyping, and boar spermatozoa motility assay, it was identified that one of the wines contained a Bacillus simplex BAC91, which produced a heat-stable substance toxic to the mitochondria of sperm cells. The antibacterial activity of wine was tested on the vegetative cells and spores of B. simplex BAC91, B. cereus type strain ATCC 14579 and cereulide-producing B. cereus F4810/72. Although the vegetative cells and spores of B. simplex BAC91 were sensitive to the antimicrobial effects of wine, the spores of B. cereus strains ATCC 14579 and F4810/72 stayed viable for at least 4 months. According to these results, Bacillus spp., more specifically spores, can be a possible risk to the wine consumer.
Resumo:
NeEstimator v2 is a completely revised and updated implementation of software that produces estimates of contemporary effective population size, using several different methods and a single input file. NeEstimator v2 includes three single-sample estimators (updated versions of the linkage disequilibrium and heterozygote-excess methods, and a new method based on molecular coancestry), as well as the two-sample (moment-based temporal) method. New features include the following: (i) an improved method for accounting for missing data; (ii) options for screening out rare alleles; (iii) confidence intervals for all methods; (iv) the ability to analyse data sets with large numbers of genetic markers (10000 or more); (v) options for batch processing large numbers of different data sets, which will facilitate cross-method comparisons using simulated data; and (vi) correction for temporal estimates when individuals sampled are not removed from the population (Plan I sampling). The user is given considerable control over input data and composition, and format of output files. The freely available software has a new JAVA interface and runs under MacOS, Linux and Windows.
Resumo:
We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual’s previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag–recapture data and tag–recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).
Resumo:
We present a Bayesian sampling algorithm called adaptive importance sampling or population Monte Carlo (PMC), whose computational workload is easily parallelizable and thus has the potential to considerably reduce the wall-clock time required for sampling, along with providing other benefits. To assess the performance of the approach for cosmological problems, we use simulated and actual data consisting of CMB anisotropies, supernovae of type Ia, and weak cosmological lensing, and provide a comparison of results to those obtained using state-of-the-art Markov chain Monte Carlo (MCMC). For both types of data sets, we find comparable parameter estimates for PMC and MCMC, with the advantage of a significantly lower wall-clock time for PMC. In the case of WMAP5 data, for example, the wall-clock time scale reduces from days for MCMC to hours using PMC on a cluster of processors. Other benefits of the PMC approach, along with potential difficulties in using the approach, are analyzed and discussed.