863 resultados para Ershov hierarchy
Resumo:
Mapping and monitoring are believed to provide an early warning sign to determine when to stop tumor removal to avoid mechanical damage to the corticospinal tract (CST). The objective of this study was to systematically compare subcortical monopolar stimulation thresholds (1-20 mA) with direct cortical stimulation (DCS)-motor evoked potential (MEP) monitoring signal abnormalities and to correlate both with new postoperative motor deficits. The authors sought to define a mapping threshold and DCS-MEP monitoring signal changes indicating a minimal safe distance from the CST.
Resumo:
In the course of this study, stiffness of a fibril array of mineralized collagen fibrils modeled with a mean field method was validated experimentally at site-matched two levels of tissue hierarchy using mineralized turkey leg tendons (MTLT). The applied modeling approaches allowed to model the properties of this unidirectional tissue from nanoscale (mineralized collagen fibrils) to macroscale (mineralized tendon). At the microlevel, the indentation moduli obtained with a mean field homogenization scheme were compared to the experimental ones obtained with microindentation. At the macrolevel, the macroscopic stiffness predicted with micro finite element (μFE) models was compared to the experimental stiffness measured with uniaxial tensile tests. Elastic properties of the elements in μFE models were injected from the mean field model or two-directional microindentations. Quantitatively, the indentation moduli can be properly predicted with the mean-field models. Local stiffness trends within specific tissue morphologies are very weak, suggesting additional factors responsible for the stiffness variations. At macrolevel, the μFE models underestimate the macroscopic stiffness, as compared to tensile tests, but the correlations are strong.
Resumo:
This paper introduces a mobile application (app) as the first part of an interactive framework. The framework enhances the inter-action between cities and their citizens, introducing the Fuzzy Analytical Hierarchy Process (FAHP) as a potential information acquisition method to improve existing citizen management en-deavors for cognitive cities. Citizen management is enhanced by advanced visualization using Fuzzy Cognitive Maps (FCM). The presented app takes fuzziness into account in the constant inter-action and continuous development of communication between cities or between certain of their entities (e.g., the tax authority) and their citizens. A transportation use case is implemented for didactical reasons.
Resumo:
The fuzzy analytical network process (FANP) is introduced as a potential multi-criteria-decision-making (MCDM) method to improve digital marketing management endeavors. Today’s information overload makes digital marketing optimization, which is needed to continuously improve one’s business, increasingly difficult. The proposed FANP framework is a method for enhancing the interaction between customers and marketers (i.e., involved stakeholders) and thus for reducing the challenges of big data. The presented implementation takes realities’ fuzziness into account to manage the constant interaction and continuous development of communication between marketers and customers on the Web. Using this FANP framework, the marketers are able to increasingly meet the varying requirements of their customers. To improve the understanding of the implementation, advanced visualization methods (e.g., wireframes) are used.
Resumo:
The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from δCP and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5δ C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has ~ 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract δCP from the data, the first LBNO phase can convincingly give evidence for CPV on the 3δ C.L. using today’s knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties.
Resumo:
This paper examines whether population shrinkage leads to changes in urban hierarchy in terms of their relative size and function from the standpoint of the new economic geography. We find some salient patterns in which small cities in the agglomeration shadow become relatively bigger as medium industries spill over on them. This appears to be quite robust against a variation in the rate of natural change among cities. Thus, rank-size relationship and the urban hierarchy are partly disrupted as population shrinks. Regarding the welfare of the residents, a lower demand for land initially causes rent to go down, which boosts the utility. However, the illusion is short-lived because markets soon begin to shrink and suppress wages. We also find that it is better to maintain a slow pace of overall population decline in the long-term perspective. More importantly, it is crucial to sustain the relative livability of smaller cities to minimize the overall loss of utility.
Resumo:
The main purpose of a gene interaction network is to map the relationships of the genes that are out of sight when a genomic study is tackled. DNA microarrays allow the measure of gene expression of thousands of genes at the same time. These data constitute the numeric seed for the induction of the gene networks. In this paper, we propose a new approach to build gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling. The interactions induced by the Bayesian classifiers are based both on the expression levels and on the phenotype information of the supervised variable. Feature selection and bootstrap resampling add reliability and robustness to the overall process removing the false positive findings. The consensus among all the induced models produces a hierarchy of dependences and, thus, of variables. Biologists can define the depth level of the model hierarchy so the set of interactions and genes involved can vary from a sparse to a dense set. Experimental results show how these networks perform well on classification tasks. The biological validation matches previous biological findings and opens new hypothesis for future studies