941 resultados para Errors de sistemes (Enginyeria)
Resumo:
This paper explores the benefits of compensating transmitter gain and phase inbalances in the receiver for quadrature communication systems. It is assumed that the gain and phase imbalances are introduced at the transmitter only. A simple non-data aided DSP algorithm is used at the reciever to compensate for the imbalances. Computer simulation has been formed to study a coherent QPSK communication system.
Resumo:
Among the largest resources for biological sequence data is the large amount of expressed sequence tags (ESTs) available in public and proprietary databases. ESTs provide information on transcripts but for technical reasons they often contain sequencing errors. Therefore, when analyzing EST sequences computationally, such errors must be taken into account. Earlier attempts to model error prone coding regions have shown good performance in detecting and predicting these while correcting sequencing errors using codon usage frequencies. In the research presented here, we improve the detection of translation start and stop sites by integrating a more complex mRNA model with codon usage bias based error correction into one hidden Markov model (HMM), thus generalizing this error correction approach to more complex HMMs. We show that our method maintains the performance in detecting coding sequences.
Resumo:
This note investigates the adequacy of the finite-sample approximation provided by the Functional Central Limit Theorem (FCLT) when the errors are allowed to be dependent. We compare the distribution of the scaled partial sums of some data with the distribution of the Wiener process to which it converges. Our setup is purposely very simple in that it considers data generated from an ARMA(1,1) process. Yet, this is sufficient to bring out interesting conclusions about the particular elements which cause the approximations to be inadequate in even quite large sample sizes.
Resumo:
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfolio in the context of Capital Asset Pricing Model (CAPM), allowing for a wide class of error distributions which include normality as a special case. These tests are developed in the frame-work of multivariate linear regressions (MLR). It is well known however that despite their simple statistical structure, standard asymptotically justified MLR-based tests are unreliable. In financial econometrics, exact tests have been proposed for a few specific hypotheses [Jobson and Korkie (Journal of Financial Economics, 1982), MacKinlay (Journal of Financial Economics, 1987), Gib-bons, Ross and Shanken (Econometrica, 1989), Zhou (Journal of Finance 1993)], most of which depend on normality. For the gaussian model, our tests correspond to Gibbons, Ross and Shanken’s mean-variance efficiency tests. In non-gaussian contexts, we reconsider mean-variance efficiency tests allowing for multivariate Student-t and gaussian mixture errors. Our framework allows to cast more evidence on whether the normality assumption is too restrictive when testing the CAPM. We also propose exact multivariate diagnostic checks (including tests for multivariate GARCH and mul-tivariate generalization of the well known variance ratio tests) and goodness of fit tests as well as a set estimate for the intervening nuisance parameters. Our results [over five-year subperiods] show the following: (i) multivariate normality is rejected in most subperiods, (ii) residual checks reveal no significant departures from the multivariate i.i.d. assumption, and (iii) mean-variance efficiency tests of the market portfolio is not rejected as frequently once it is allowed for the possibility of non-normal errors.
Resumo:
This note develops general model-free adjustment procedures for the calculation of unbiased volatility loss functions based on practically feasible realized volatility benchmarks. The procedures, which exploit the recent asymptotic distributional results in Barndorff-Nielsen and Shephard (2002a), are both easy to implement and highly accurate in empirically realistic situations. On properly accounting for the measurement errors in the volatility forecast evaluations reported in Andersen, Bollerslev, Diebold and Labys (2003), the adjustments result in markedly higher estimates for the true degree of return-volatility predictability.
Resumo:
The results of an investigation on the limits of the random errors contained in the basic data of Physical Oceanography and their propagation through the computational procedures are presented in this thesis. It also suggest a method which increases the reliability of the derived results. The thesis is presented in eight chapters including the introductory chapter. Chapter 2 discusses the general theory of errors that are relevant in the context of the propagation of errors in Physical Oceanographic computations. The error components contained in the independent oceanographic variables namely, temperature, salinity and depth are deliniated and quantified in chapter 3. Chapter 4 discusses and derives the magnitude of errors in the computation of the dependent oceanographic variables, density in situ, gt, specific volume and specific volume anomaly, due to the propagation of errors contained in the independent oceanographic variables. The errors propagated into the computed values of the derived quantities namely, dynamic depth and relative currents, have been estimated and presented chapter 5. Chapter 6 reviews the existing methods for the identification of level of no motion and suggests a method for the identification of a reliable zero reference level. Chapter 7 discusses the available methods for the extension of the zero reference level into shallow regions of the oceans and suggests a new method which is more reliable. A procedure of graphical smoothening of dynamic topographies between the error limits to provide more reliable results is also suggested in this chapter. Chapter 8 deals with the computation of the geostrophic current from these smoothened values of dynamic heights, with reference to the selected zero reference level. The summary and conclusion are also presented in this chapter.