975 resultados para Endothelin-converting Enzyme


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profi le measured by UPLC MS/MS analysis demonstrated signifi cant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50 % of DPPH radical (i.e. lower IC50). Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14 % of E. camaldulensis and 49 % of L. glaucescens); whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC50 than positive control (captopril). The present study demonstrated that fermentation has an infl uence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-phase synthesis was used to prepare a series of modifications to the selective and potent inhibitor of endopeptidase EC 3.4.24.15 (EP24.15), N-[1(R,S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP), which is degraded at the Ala-Tyr bond, thus severely limiting its utility in vivo. Reducing the amide bond between the Ala and Tyr decreased the potency of the inhibitor to 1/1000. However, the replacement of the second alanine residue immediately adjacent to the tyrosine with alpha-aminoisobutyric acid gave a compound (JA-2) that was equipotent with cFP, with a K-i of 23 nM. Like cFP, JA-2 inhibited the closely related endopeptidase EC 3.4.24.16 1/20 to 1/30 as potently as it did EP24.15, and did not inhibit the other thermolysin-like endopeptidases angiotensin-converting enzyme, endothelin-converting enzyme and neutral endopeptidase. The biological stability of JA-2 was investigated by incubation with a number of membrane and soluble sheep tissue extracts. In contrast with cFP, JA-2 remained intact after 48 h of incubation with all tissues examined. Further modifications to the JA-2 compound failed to improve the potency of this inhibitor. Hence JA-2 is a potent, EP24.15-preferential and biologically stable inhibitor, therefore providing a valuable tool for further assessing the biological functions of EP24.15.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Several lines of evidence suggest that the dietary isoflavone genistein (Gen) has beneficial effects with regard to cardiovascular disease and in particular on aspects related to blood pressure and angiogenesis. The biological action of Gen may be, at Least in part, attributed to its ability to affect cell signalling and response. However, so far, most of the molecular mechanisms underlying the activity of Gen in the endothelium are unknown. Methods and results: To examine the transcriptional response to 2.5 mu M Gen on primary human endothelial cells (HUVEC), we applied cDNA array technology both under baseline condition and after treatment with the pro-atherogenic stimulus, copper-oxidized LDL. The alteration of the expression patterns of individual transcripts was substantiated using either RT-PCR or Northern blotting. Gen significantly affected the expression of genes encoding for proteins centrally involved in the vascular tone such as endothelin-converting enzyme-1, endothetin-2, estrogen related receptor a and atria[ natriuretic peptide receptor A precursor. Furthermore, Gen countered the effect of oxLDL on mRNA levels encoding for vascular endothelial growth factor receptor 165, types 1 and 2. Conclusions: Our data indicate that physiologically achievable levels of Gen change the expression of mRNA encoding for proteins involved in the control of blood pressure under baseline conditions and reduce the angiogenic response to oxLDL in the endothelium. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose: Calcitonin gene‐related peptide (CGRP) is a potent vasodilator, implicated in the pathogenesis of migraine. CGRP activates a receptor complex comprising, calcitonin receptor‐like receptor (CLR) and receptor activity‐modifying protein 1 (RAMP1). In vitro studies indicate recycling of CLR•RAMP1 is regulated by degradation of CGRP in early endosomes by endothelin‐converting enzyme‐1 (ECE‐1). However, it is not known if ECE‐1 regulates the resensitization of CGRP‐induced responses in functional arterial tissue. Experimental Approach: CLR, ECE‐1a‐d and RAMP1 expression in rat mesenteric artery smooth muscle cells (RMA‐SMCs) and mesenteric arteries was analyzed by RT‐PCR and by immunofluorescence and confocal microscopy. CGRP‐induced signaling in cells was examined by measuring cAMP production and ERK activation. CGRP‐induced relaxation of arteries was measured by isometric wire myography. ECE‐1 was inhibited using the specific inhibitor, SM‐19712. Key Results: RMA‐SMCs and arteries contained mRNA for CLR, ECE‐1a‐d and RAMP1. ECE‐1 was present in early endosomes of RMA‐SMCs and in the smooth muscle layer of arteries. CGRP induced endothelium‐independent relaxation of arteries. ECE‐1 inhibition had no effect on initial CGRP‐induced responses but reduced cAMP generation in RMA‐SMCs and vasodilation in mesenteric arteries responses to subsequent CGRP challenges. Conclusions and Implications: ECE‐1 regulates the resensitization of responses to CGRP in RMA‐SMCs and mesenteric arteries. CGRP‐induced relaxation does not involve endothelium‐derived pathways. This is the first report of ECE‐1 regulating CGRP responses in SMCs and arteries. ECE‐1 inhibitors may attenuate an important vasodilatory pathway, implicated in primary headaches and may represent a new therapeutic approach for the treatment of migraine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with beta-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK(1)R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK(1)R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca(2+) signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK(1)R. SP induced association of beta-arrestin1 and PP2A with noninternalized NK(1)R. beta-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK(1)R with PP2A, indicating that beta-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping beta-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK(1)R with PP2A. Resensitization of NK(1)R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK(1)R and mediates resensitization. PP2A interaction with NK(1)R requires beta-arrestin1. ECE-1 promotes this process by releasing beta-arrestin1 from NK(1)R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corpus luteum (CL) lifespan is characterized by a rapid growth, differentiation and controlled regression of the luteal tissue, accompanied by an intense angiogenesis and angioregression. Indeed, the CL is one of the most highly vascularised tissue in the body with a proliferation rate of the endothelial cells 4- to 20-fold more intense than in some of the most malignant human tumours. This angiogenic process should be rigorously controlled to allow the repeated opportunities of fertilization. After a first period of rapid growth, the tissue becomes stably organized and prepares itself to switch to the phenotype required for its next apoptotic regression. In pregnant swine, the lifespan of the CLs must be extended to support embryonic and foetal development and vascularisation is necessary for the maintenance of luteal function. Among the molecules involved in the angiogenesis, Vascular Endothelial Growth Factor (VEGF) is the main regulator, promoting endothelial cells proliferation, differentiation and survival as well as vascular permeability and vessel lumen formation. During vascular invasion and apoptosis process, the remodelling of the extracellular matrix is essential for the correct evolution of the CL, particularly by the action of specific class of proteolytic enzymes known as matrix metalloproteinases (MMPs). Another important factor that plays a role in the processes of angiogenesis and angioregression during the CL formation and luteolysis is the isopeptide Endothelin-1 (ET-1), which is well-known to be a potent vasoconstrictor and mitogen for endothelial cells. The goal of the present thesis was to study the role and regulation of vascularisation in an adult vascular bed. For this purpose, using a precisely controlled in vivo model of swine CL development and regression, we determined the levels of expression of the members of VEGF system (VEGF total and specific isoforms; VEGF receptor-1, VEGFR-1; VEGF receptor-2, VEGFR-2) and ET- 1 system (ET-1; endothelin converting enzyme-1, ECE-1; endothelin receptor type A, ET-A) as well as the activity of the Ca++/Mg++-dependent endonucleases and gelatinases (MMP-2 and MMP-9). Three experiments were conducted to reach such objectives in CLs isolated from ovaries of cyclic, pregnant or fasted gilts. In the Experiment I, we evaluated the influence of acute fasting on VEGF production and VEGF, VEGFR-2, ET-1, ECE-1 and ET-A mRNA expressions in CLs collected on day 6 after ovulation (midluteal phase). The results indicated a down-regulation of VEGF, VEGFR-2, ET-1 and ECE-1 mRNA expression, although no change was observed for VEGF protein. Furthermore, we observed that fasting stimulated steroidogenesis by luteal cells. On the basis of the main effects of VEGF (stimulation of vessel growth and endothelial permeability) and ET-1 (stimulation of endothelial cell proliferation and vasoconstriction, as well as VEGF stimulation), we concluded that feed restriction possibly inhibited luteal vessel development. This could be, at least in part, compensated by a decrease of vasal tone due to a diminution of ET-1, thus ensuring an adequate blood flow and the production of steroids by the luteal cells. In the Experiment II, we investigated the relationship between VEGF, gelatinases and Ca++/Mg++-dependent endonucleases activities with the functional CL stage throughout the oestrous cycle and at pregnancy. The results demonstrated differential patterns of expression of those molecules in correspondence to the different phases of the oestrous cycle. Immediately after ovulation, VEGF mRNA/protein levels and MMP-9 activity are maximal. On days 5–14 after ovulation, VEGF expression and MMP-2 and -9 activities are at basal levels, while Ca++/Mg++-dependent endonuclease levels increased significantly in relation to day 1. Only at luteolysis (day 17), Ca++/Mg++-dependent endonuclease and MMP-2 spontaneous activity increased significantly. At pregnancy, high levels of MMP-9 and VEGF were observed. These results suggested that during the very early luteal phase, high MMPs activities coupled with high VEGF levels drive the tissue to an angiogenic phenotype, allowing CL growth under LH (Luteinising Hormone) stimulus, while during the late luteal phase, low VEGF and elevate MMPs levels may play a role in the apoptotic tissue and extracellular matrix remodelling during structural luteolysis. In the Experiment III, we described the expression patterns of all distinct VEGF isoforms throughout the oestrous cycle. Furthermore, the mRNA expression and protein levels of both VEGF receptors were also evaluated. Four novel VEGF isoforms (VEGF144, VEGF147, VEGF182, and VEGF164b) were found for the first time in swine and the seven identified isoforms presented four different patterns of expression. All isoforms showed their highest mRNA levels in newly formed CLs (day 1), followed by a decrease during mid-late luteal phase (days 10–17), except for VEGF182, VEGF188 and VEGF144 that showed a differential regulation during late luteal phase (day 14) or at luteolysis (day 17). VEGF protein levels paralleled the most expressed and secreted VEGF120 and VEGF164 isoforms. The VEGF receptors mRNAs showed a different pattern of expression in relation to their ligands, increasing between day 1 and 3 and gradually decreasing during the mid-late luteal phase. The differential regulation of some VEGF isoforms principally during the late luteal phase and luteolysis suggested a specific role of VEGF during tissue remodelling process that occurs either for CL maintenance in case of pregnancy or for noncapillary vessel development essential for tissue removal during structural luteolysis. In summary, our findings allow us to determine relationships among factors involved in the angiogenesis and angioregression mechanisms that take place during the formation and regression of the CL. Thus, CL provides a very interesting model for studying such factors in different fields of the basic research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urotensin-II (UII) is a highly potent endogenous peptide within the cardiovascular system. Through stimulation of Galphaq-coupled UT receptors, UII mediates contraction of vascular smooth muscle and endothelial-dependent vasorelaxation, and positive inotropy in human right atrium and ventricle. A pathogenic role of the UT receptor system is emerging in cardiovascular disease states, with evidence for upregulation of the UT receptor system in patients with congestive heart failure (CHF), pulmonary hypertension, cirrhosis and portal hypertension, and chronic renal failure. In vitro and in vivo studies show that under pathophysiological conditions, UII might contribute to cardiomyocyte hypertrophy, extracellular matrix production, enhanced vasoconstriction, vascular smooth muscle cell hyperplasia, and endothelial cell hyper-permeability. Single nucleotide polymorphisms of the UII gene may also impart a genetic predisposition of patients to diabetes. Therefore, the UT receptor system is a potential therapeutic target in the treatment of cardiac, pulmonary, and renal diseases. UT receptor antagonists are currently being developed to prevent and/or reverse the effects of over-activated UT receptors by the endogenous ligand. This review describes UII peptide and converting enzymes, and UT receptors in the cardiovascular system, focusing on pathophysiological roles of UII in the heart and blood vessels. (C) 2004 Elsevier Inc. All rights reserved,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The penis is kept in the flaccid state mainly via a tonic activity of norepinephrine and endothelins (ETs). ET-1 is important in salt-sensitive forms of hypertension. We hypothesized that cavernosal responses to ET-1 are enhanced in deoxycorticosterone acetate (DOCA)-salt mice and that blockade of ETA receptors prevents abnormal responses of the corpus cavernosum in DOCA-salt hypertension. Male C57BL/6 mice were unilaterally nephrectomized and treated for 5 weeks with both DOCA and water containing 1% NaCl and 0.2% KCl. Control mice were uninephrectomized and received tap water with no added salt. Animals received either the ETA antagonist atrasentan (5 mg.day(-1).kg(-1) body weight) or vehicle. DOCA-salt mice displayed increased systolic blood pressure (SBP), and treatment with atrasentan decreased SBP in DOCA-salt mice. Contractile responses in cavernosal strips from DOCA-salt mice were enhanced by ET-1, phenylephrine, and electrical field stimulation (EFS) of adrenergic nerves, whereas relaxations were not altered by IRL-1620 (an ETB agonist), acetylcholine, sodium nitroprusside, and EFS of nonadrenergic noncholinergic nerves. PD59089 (an ERK1/2 inhibitor), but not Y-27632 (a Rho-kinase inhibitor), abolished enhanced contractions to ET-1 in cavernosum from DOCA-salt mice. Treatment of DOCA-salt mice with atrasentan did not normalize cavernosal responses. In summary, DOCA-salt treatment in mice enhances cavernosal reactivity to contractile, but not to relaxant, stimuli, via ET-1/ETA receptor-independent mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Giachini FR, Zemse SM, Carneiro FS, Lima VV, Carneiro ZN, Callera GE, Ergul A, Webb RC, Tostes RC. Interleukin-10 attenuates vascular responses to endothelin-1 via effects on ERK1/2-dependent pathway. Am J Physiol Heart Circ Physiol 296: H489-H496, 2009. First published December 12, 2008; doi:10.1152/ajpheart.00251.2008.-Interleukin-10 (IL-10) is an anti-inflammatory cytokine with protective actions on the vasculature. On the other hand, endothelin ( ET)-1 has potent vasoconstrictor, mitogenic, and proinflammatory activities, which have been implicated in the pathophysiology of a number of cardiovascular diseases. We hypothesized that, in a condition where ET-1 expression is upregulated, i.e., on infusion of TNF-alpha, IL-10 confers vascular protection from ET-1-induced injury. Aortic rings and first-order mesenteric arteries from male C57BL/6 (WT) and IL-10-knockout (IL-10(-/-)) mice were treated with human recombinant TNF-alpha (220 ng.kg(-1).day(-1)) or vehicle (saline) for 14 days. TNF-alpha infusion significantly increased blood pressure in IL-10(-/-), but not WT, mice. TNF-alpha augmented vascular ET-1 mRNA expression in arteries from WT and IL-10(-/-) mice. ET type A (ETA) receptor expression was increased in arteries from IL-10(-/-) mice, and TNF-alpha infusion did not change vascular ETA receptor expression in control or IL-10(-/-) mice. Aorta and mesenteric arteries from TNF-alpha-infused IL-10(-/-) mice displayed increased contractile responses to ET-1, but not the ET type B receptor agonist IRL-1620. The ETA receptor antagonist atrasentan completely abolished responses to ET-1 in aorta and mesenteric vessels, whereas the ERK1/2 inhibitor PD-98059 abrogated increased contractions to ET-1 in arteries from TNF-alpha-infused IL-10(-/-) mice. Infusion of TNF-alpha, as well as knockdown of IL-10 (IL-10(-/-)), induced an increase in total and phosphorylated ERK1/2. These data demonstrate that IL-10 counteracts ET(A)-mediated vascular responses to ET-1, as well as activation of the ERK1/2 pathway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

TH-induced cardiac hypertrophy in vivo is accompanied by increased cardiac Transforming Growth Factor-beta 1 (TGF-beta 1) levels, which is mediated by Angiotensin II type 1 receptors (AT1R) and type 2 receptors (AT2R). However, the possible involvement of this factor in TH-induced cardiac hypertrophy is unknown. In this study we evaluated whether TH is able to modulate TGF-beta 1 in isolated cardiac, as well as the possible contribution of AT1R and AT2R in this response. The cardiac fibroblasts treated with T(3) did not show alteration on TGF-beta 1 expression. However, cardiomyocytes treated with T(3) presented an increase in TGF-beta 1 expression, as well as an increase in protein synthesis. The AT1R blockade prevented the T(3)-induced cardiomyocyte hypertrophy, while the AT2R blockage attenuated this response. The T(3)-induced increase on TGF-beta 1 expression in cardiomyocytes was not changed by the use of AT1R and AT2R blockers. These results indicate that Angiotensin II receptors are not implicated in T(3)-induced increase on TGF-beta expression and suggest that the trophic effects exerted by T(3) on cardiomyocytes are not dependent on the higher TGF-beta 1 levels, since the AT1R and AT2R blockers were able to attenuate the T(3)-induced cardiomyocyte hypertrophy but were not able to attenuate the increase on TGF-beta 1 levels promoted by T(3).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pulmonary vascular remodeling is an important pathological feature of pulmonary hypertension, leading to increased pulmonary vascular resistance and reduced compliance. It involves thickening of all three layers of the blood vessel wall (due to hypertrophy and/or hyperplasia of the predominant cell type within each layer), as well as extracellular matrix deposition. Neomuscularisation of non-muscular arteries and formation of plexiform and neointimal lesions also occur. Stimuli responsible for remodeling involve transmural pressure, stretch, shear stress, hypoxia, various mediators [angiotensin II, endothelin (ET)-1, 5-hydroxytryptamine, growth factors, and inflammatory cytokines], increased serine elastase activity, and tenascin-C. In addition, there are reductions in the endothelium-derived antimitogenic substances, nitric oxide, and prostacyclin. Intracellular signalling mechanisms involved in pulmonary vascular remodeling include elevations in intracellular Ca2+ and activation of the phosphatidylinositol pathway, protein kinase C, and mitogen-activated protein kinase. In animal models of pulmonary hypertension, various drugs have been shown to attenuate pulmonary vascular remodeling. These include angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, ET receptor antagonists, ET-converting enzyme inhibitors, nitric oxide, phosphodiesterase 5 inhibitors, prostacyclin, Ca2+-channel antagonists, heparin, and serine elastase inhibitors. Inhibition of remodeling is generally accompanied by reductions in pulmonary artery pressure. The efficacy of some of the drugs varies, depending on the animal model of the disease. In view of the complexity of the remodeling process and the diverse aetiology of pulmonary hypertension in humans, it is to be anticipated that successful anti-remodeling therapy in the clinic will require a range of different drug options. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction Among individuals with a history of myocardial infarction (MI), higher levels of blood pressure (BP) are associated with increased long-term risks of death from coronary heart disease. Treatment with a BP-lowering regimen, based on omapatrilat may result in greater clinical benefits than treatment with a regimen based on a regular angiotensin-converting enzyme (ACE) inhibitor because of more favourable effects on the renin-angiotensin-aldosterone system. Methods Seven hundred and twenty-three clinically stable patients with a history of MI or unstable angina, and a mean entry BP of 134/77 mmHg, were randomised to six months treatment with omapatrilat 40 mg, omapatrilat 20 mg, or matching placebo. Results After six months, mean BP levels (systolic/diastolic) in the omapatrilat 40 mg group were reduced by 4.3/ 2.9 mmHg (95% confidence interval 1.3 to 7.2/1.2 to 4.6). Mean BP levels in the omapatrilat 20 mg group were reduced by 4.6/1.0 mmHg (1.6 to 7.6/-0.7 to 2.6) in comparison with the placebo group. Both doses of omapatrilat also produced significant decreases in plasma ACE activity and significant increases in levels of plasma renin activity, atrial natriuretic peptide, endothelin and homocysteine (p

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The pharmacotherapy currently recommended by the American College of Cardiology and the American Heart Association for heart failure (HF) is a diuretic, an angiotensin-converting enzyme inhibitor (ACEI), a β-adrenoceptor antagonist and (usually) digitalis. This current treatment of HF may be improved by optimising the dose of ACEI used, as increasing the dose of lisinopril increases its benefits in HF. Selective angiotensin receptor-1 (AT1) antagonists are effective alternatives for those who cannot tolerate ACEIs. AT1 antagonists may also be used in combination with ACEIs, as some studies have shown cumulative benefits for the combination. In addition to being used in Stage IV HF patients, in whom it has a marked benefit, spironolactone should be studied in less severe HF and in the presence of β-blockers. The use of carvedilol, extended-release metoprolol and bisoprolol should be extended to severe HF patients as these agents have been shown to decrease mortality in this group. The ancillary properties of carvedilol, particularly antagonism at prejunctional β-adrenoceptors, may give it additional benefits to selective β1-adrenoceptor antagonists. Celiprolol and bucindolol are not the β-blockers of choice in HF, as they do not decrease mortality. Although digitalis does not reduce mortality, it remains the only option for a long-term positive inotropic effect, as the long-term use of the phosphodiesterase inhibitors is associated with increased mortality. The calcium sensitising drug levosimendan may be useful in the hospital treatment of decompensated HF to increase cardiac output and improve dyspnoea and fatigue. The antiarrhythmic drug amiodarone should probably be used in patients at high risk of arrhythmic or sudden death, although this treatment may soon be superseded by the more expensive implanted cardioverter defibrillators, which are probably more effective and have fewer side effects. The natriuretic peptide nesiritide has recently been introduced for the hospital treatment of decompensated HF. Novel drugs that may be beneficial in the treatment of HF include the vasopeptidase inhibitors and the selective endothelin-A receptor antagonists but these require much more investigation. However, disappointing results have been obtained in a large clinical trial of the tumour necrosis factor α antagonist etanercept, where no likelihood of a difference between placebo and etanercept was observed. Small clinical trials with recombinant growth hormone to thicken ventricles in dilated cardiomyopathy have given variable results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Angioedema is a rare side effect of angiotensin converting enzyme (ACE) inhibitors. Its cause is probably related to the accumulation of bradykinin and substance P, i.e. two proinflammatory peptides normally inactivated by ACE. Angioedema occurs most of the time at the early phase of treatment, but may also develop during long-term treatment. It might involve the gastro-intestinal tract, leading to abdominal pain, vomiting and/or diarrhea, as well as pancreatitis. Dipeptidyl-ptidase-4 (DPP-4) is another enzyme allowing the degradation of bradykinin and substance P. Co-administering an ACE inhibitor and a DPP-4 inhibitor (as an antidiabetic agent) increases significantly the risk of angioedema.