954 resultados para Elliptic equations
Resumo:
In this paper we discuss the existence of alpha-Holder classical solutions for non-autonomous abstract partial neutral functional differential equations. An application is considered.
Resumo:
A robust semi-implicit central partial difference algorithm for the numerical solution of coupled stochastic parabolic partial differential equations (PDEs) is described. This can be used for calculating correlation functions of systems of interacting stochastic fields. Such field equations can arise in the description of Hamiltonian and open systems in the physics of nonlinear processes, and may include multiplicative noise sources. The algorithm can be used for studying the properties of nonlinear quantum or classical field theories. The general approach is outlined and applied to a specific example, namely the quantum statistical fluctuations of ultra-short optical pulses in chi((2)) parametric waveguides. This example uses a non-diagonal coherent state representation, and correctly predicts the sub-shot noise level spectral fluctuations observed in homodyne detection measurements. It is expected that the methods used wilt be applicable for higher-order correlation functions and other physical problems as well. A stochastic differencing technique for reducing sampling errors is also introduced. This involves solving nonlinear stochastic parabolic PDEs in combination with a reference process, which uses the Wigner representation in the example presented here. A computer implementation on MIMD parallel architectures is discussed. (C) 1997 Academic Press.
Resumo:
The suprathermal particles, electrons and protons, coming from the magnetosphere and precipitating into the high-latitude atmosphere are an energy source of the Earth's ionosphere. They interact with ambient thermal gas through inelastic and elastic collisions. The physical quantities perturbed by these precipitations, such as the heating rate, the electron production rate, or the emission intensities, can be provided in solving the kinetic stationary Boltzmann equation. This equation yields particle fluxes as a function of altitude, energy, and pitch angle. While this equation has been solved through different ways for the electron transport and fully tested, the proton transport is more complicated. Because of charge-changing reactions, the latter is a set of two-coupled transport equations that must be solved: one for protons and the other for H atoms. We present here a new approach that solves the multistream proton/hydrogen transport equations encompassing the collision angular redistributions and the magnetic mirroring effect. In order to validate our model we discuss the energy conservation and we compare with another model under the same inputs and with rocket observations. The influence of the angular redistributions is discussed in a forthcoming paper.
Resumo:
Background & aims: Severe obesity imposes physical limitations to body composition assessment. Our aim was to compare body fat (BF) estimations of severely obese patients obtained by bioelectrical impedance (BIA) and air displacement plethysmography (ADP) for development of new equations for BF prediction. Methods: Severely obese subjects (83 female/36 mate, mean age = 41.6 +/- 11.6 years) had BF estimated by BIA and ADP. The agreement of the data was evaluated using Bland-Altman`s graphic and concordance correlation coefficient (CCC). A multivariate regression analysis was performed to develop and validate new predictive equations. Results: BF estimations from BIA (64.8 +/- 15 kg) and ADP (65.6 +/- 16.4 kg) did not differ (p > 0.05, with good accuracy, precision, and CCC), but the Bland- Altman graphic showed a wide Limit of agreement (- 10.4; 8.8). The standard BIA equation overestimated BF in women (-1.3 kg) and underestimated BF in men (5.6 kg; p < 0.05). Two BF new predictive equations were generated after BIA measurement, which predicted BF with higher accuracy, precision, CCC, and limits of agreement than the standard BIA equation. Conclusions: Standard BIA equations were inadequate for estimating BF in severely obese patients. Equations developed especially for this population provide more accurate BF assessment. (C) 2008 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Prediction of carbohydrate fractions using equations from the Cornell Net Carbohydrate and Protein System (CNCPS) is a valuable tool to assess the nutritional value of forages. In this paper these carbohydrate fractions were predicted using data from three sunflower (Helianthus annuus L.) cultivars, fresh or as silage. The CNCPS equations for fractions B(2) and C include measurement of ash and protein-free neutral detergent fibre (NDF) as one of their components. However, NDF lacks pectin and other non-starch polysaccharides that are found in the cell wall (CW) matrix, so this work compared the use of a crude CW preparation instead of NDF in the CNCPS equations. There were no differences in the estimates of fractions B, and C when CW replaced NDF; however there were differences in fractions A and B2. Some of the CNCPS equations could be simplified when using CW instead of NDF Notably, lignin could be expressed as a proportion of DM, rather than on the basis of ash and protein-free NDF, when predicting CNCPS fraction C. The CNCPS fraction B(1) (starch + pectin) values were lower than pectin determined through wet chemistty. This finding, along with the results obtained by the substitution of CW for NDF in the CNCPS equations, suggests that pectin was not part of fraction B(1) but present in fraction A. We suggest that pectin and other non-starch polysaccharides that are dissolved by the neutral detergent solution be allocated to a specific fraction (B2) and that another fraction (B(3)) be adopted for the digestible cell wall carbohydrates.
Resumo:
A matricial method to solve the decay chain differential equations system is presented. The quantity of each nuclide in the chain at a time t may be evaluated by analytical expressions obtained in a simple way using recurrence relations. This method may be applied to problems of radioactive buildup and decay and can be easily implemented computationally. (C) 2009 Elsevier B.V. All rights reserved.
Inverse parabolicity of PDF equations in turbulent flows - reversed-time diffusion or something else
Resumo:
In this paper we present the composite Euler method for the strong solution of stochastic differential equations driven by d-dimensional Wiener processes. This method is a combination of the semi-implicit Euler method and the implicit Euler method. At each step either the semi-implicit Euler method or the implicit Euler method is used in order to obtain better stability properties. We give criteria for selecting the semi-implicit Euler method or the implicit Euler method. For the linear test equation, the convergence properties of the composite Euler method depend on the criteria for selecting the methods. Numerical results suggest that the convergence properties of the composite Euler method applied to nonlinear SDEs is the same as those applied to linear equations. The stability properties of the composite Euler method are shown to be far superior to those of the Euler methods, and numerical results show that the composite Euler method is a very promising method. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Ussing [1] considered the steady flux of a single chemical component diffusing through a membrane under the influence of chemical potentials and derived from his linear model, an expression for the ratio of this flux and that of the complementary experiment in which the boundary conditions were interchanged. Here, an extension of Ussing's flux ratio theorem is obtained for n chemically interacting components governed by a linear system of diffusion-migration equations that may also incorporate linear temporary trapping reactions. The determinants of the output flux matrices for complementary experiments are shown to satisfy an Ussing flux ratio formula for steady state conditions of the same form as for the well-known one-component case. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper we discuss implicit Taylor methods for stiff Ito stochastic differential equations. Based on the relationship between Ito stochastic integrals and backward stochastic integrals, we introduce three implicit Taylor methods: the implicit Euler-Taylor method with strong order 0.5, the implicit Milstein-Taylor method with strong order 1.0 and the implicit Taylor method with strong order 1.5. The mean-square stability properties of the implicit Euler-Taylor and Milstein-Taylor methods are much better than those of the corresponding semi-implicit Euler and Milstein methods and these two implicit methods can be used to solve stochastic differential equations which are stiff in both the deterministic and the stochastic components. Numerical results are reported to show the convergence properties and the stability properties of these three implicit Taylor methods. The stability analysis and numerical results show that the implicit Euler-Taylor and Milstein-Taylor methods are very promising methods for stiff stochastic differential equations.
Resumo:
We establish existence results for solutions to three-point boundary value problems for nonlinear, second-order, ordinary differential equations with nonlinear boundary conditions. (C) 2001 Elsevier Science Ltd. All rights reserved.