957 resultados para Elevated temperature
Resumo:
Fotocatalisadores baseados em nanopartículas de dióxido de titânio modificados fornecem soluções em potencial para a mineralização de poluentes orgânicos em meio aquoso. Agentes modificadores têm sido amplamente investigados com o objetivo de promover a fotoativação pela luz visível. Foram estudadas a nível fundamental até aqui, as modificações estruturais, texturais e óticas causadas pela introdução de silício e nitrogênio na rede da titânia. Titânias puras (TiO2) e modificadas nanoestruturadas, particularmente titânias modificadas com silício (TiO2-SiO2), com razões atômicas Si/Ti de 0,1, 0,2 e 0,3 foram sintetizadas pelo método sol-gel a partir da hidrólise ácida de isopropóxido de titânio(IV) e tetraetoxisilano. As metodolo-gias sintéticas desenvolvidas tentaram aderir aos princípios da Química Verde, dispensando o uso de atmosfera inerte e temperatura e pressão elevadas, o que foi alcançado utilizando-se, principalmente, a agitação ultrassônica. Titânias modificadas com silício e dopadas com ni-trogênio (TiO2-SiO2-N) foram obtidas a partir do pré-tratamento de TiO2-SiO2 a 500 C ao ar e então submetidas ao fluxo de amônia (NH3) a 600 C por 1-3 h e, após resfriamento, foram recozidas a 400 C ao ar. Amostras distintas foram caracterizadas, na forma de pó seco e após calcinação entre 400600 C, por difração de raios X, adsorção de nitrogênio, microscopia eletrônica de varredura e espectroscopia de refletância difusa no UV-Visível. As titânias pu-ras, obtidas principalmente variando-se a razão de hidrólise, foram cristalizadas na forma de anatásio como fase predominante até 600 C, além de traços de brookita presente até 500 C. O rutilo foi identificado a partir de 600 C como fase minoritária, embora apresentando tama-nhos de cristal significativamente maiores que os estimados para o cristal de anatásio. As titâ-nias modificadas com até 20% de silício apresentaram notável estabilidade térmica, evidenci-ada pela presença exclusiva de anatásio até 900 C. Foi também observado o aparecimento de macroporos com diâmetro médio em torno de 55 nm após calcinação a 400 C, diferentemente do que se observou nas amostras em geral. A introdução de baixo teor de silício assegurou às titânias calcinadas valores elevados de área específica, atribuído ao efeito de contenção acentuada na taxa de crescimento do cristal. As titânias modificadas com silício e as titânias puras obtidas com taxa de hidrólise 25:1 para a razão H2O : Ti apresentaram mesoporos com diâmetros médios de mesma dimensão do cristal. As titânias modificadas com silício e dopa-das com nitrogênio apresentaram absorção na região visível entre 400-480 nm, com discreta redução da energia de band gap para as transições eletrônicas consideradas. Titânias calcina-das a 300−400 C apresentaram desempenho fotocatalítico semelhante ao TiO2 P25 da De-gussa sob irradiação UV, na degradação do azo corante Reactive Yellow 145 em soluções a-quosas em pH 5 a 20 1C
Resumo:
Here we demonstrate a novel technique to grow carbon nanotubes (CNTs) on addressable localized areas, at wafer level, on a fully processed CMOS substrate. The CNTs were grown using tungsten micro-heaters (local growth technique) at elevated temperature on wafer scale by connecting adjacent micro-heaters through metal tracks in the scribe lane. The electrical and optical characterization show that the CNTs are identical and reproducible. We believe this wafer level integration of CNTs with CMOS circuitry enables the low-cost mass production of CNT sensors, such as chemical sensors.
Resumo:
Large, single grain Nd-Ba-Cu-O (NdBCO) composite samples of NdBa2Cu3O7-δ (Nd-123) containing 15 and 20 mol. % non-superconducting Nd4Ba2Cu2O10 (Nd-422) phase inclusions have been fabricated successfully by a variety of techniques based on top-seeded melt growth under reduced oxygen partial pressure. Specifically, individual grains up to 2cm in diameter have been grown using (100) oriented MgO seeding, self (NdBCO) seeding at elevated temperature and self-seeding of Ag and Au doped precursor pellets. The latter exhibit a reduced peritectic decomposition temperature compared with the undoped compound. These techniques, which vary in degree of difficulty and hence reliability, yield grains with a range of microstructural homogeneity. This paper describes the general aspects of large NdBCO grain fabrication and presents the results of the different fabrication techniques.
Resumo:
One-dimensional ferroelectric nanostructures, carbon nanotubes (CNT) and CNTinorganic oxides have recently been studied due to their potential applications for microelectronics. Here, we report coating of a registered array of aligned multi-wall carbon nanotubes (MWCNT) grown on silicon substrates by functional ferroelectric Pb(Zr,Ti)O 3 (PZT) which produces structures suitable for commercial prototype memories. Microstructural analysis reveals the crystalline nature of PZT with small nanocrystals aligned in different directions. First-order Raman modes of MWCNT and PZT/MWCNT/n-Si show the high structural quality of CNT before and after PZT deposition at elevated temperature. PZT exists mostly in the monoclinic Cc/Cm phase, which is the origin of the high piezoelectric response in the system. Lowloss square piezoelectric hysteresis obtained for the 3D bottom-up structure confirms the switchability of the device. Currentvoltage mapping of the device by conducting atomic force microscopy (c-AFM) indicates very low transient current. Fabrication and functional properties of these hybrid ferroelectriccarbon nanotubes is the first step towards miniaturization for future nanotechnology sensors, actuators, transducers and memory devices. © 2012 IOP Publishing Ltd.
Resumo:
Isolation of high neutral lipid-containing microalgae is key to the commercial success of microalgae-based biofuel production. The Nile red fluorescence method has been successfully applied to the determination of lipids in certain microalgae, but has been unsuccessful in many others, particularly those with thick, rigid cell walls that prevent the penetration of the fluorescence dye. The conventional "one sample at a time" method was also time-consuming. In this study, the solvent dimethyl sulfoxide (DMSO) was introduced to microalgal samples as the stain carrier at an elevated temperature. The cellular neutral lipids were determined and quantified using a 96-well plate on a fluorescence spectrophotometer with an excitation wavelength of 530 nm and an emission wavelength of 575 run. An optimized procedure yielded a high correlation coefficient (R-2 = 0.998) with the lipid standard triolein and repeated measurements of replicates. Application of the improved method to several green algal strains gave very reproducible results with relative standard errors of 8.5%, 3.9% and 8.6%, 4.5% for repeatability and reproducibility at two concentration levels (2.0 mu g/mL and 20 mu g/mL), respectively. Moreover, the detection and quantification limits of the improved Nile red staining method were 0.8 mu g/mL and 2.0 mu g/mL for the neutral lipid standard triolein, respectively. The modified method and a conventional gravimetric determination method provided similar results on replicate samples. The 96-well plate-based Nile red method can be used as a high throughput technique for rapid screening of a broader spectrum of naturally-occurring and genetically-modified algal strains and mutants for high neutral lipid/oil production. (C) 2009 Published by Elsevier B.V.
Resumo:
A High Temperature Condensation Particle Counter (HT-CPC) is described that operates at an elevated temperature of up to ca. 300. °C such that volatile particles from typical combustion sources are not counted. The HT-CPC is functionally identical to a conventional CPC, the main challenge being to find suitable non-hazardous working fluids, with good stability, and an appropriate vapour pressure. Some key design features are described, and results of modelling which predict the HT-CPC counting efficiency. Experimental results are presented for several candidate fluids when the HT-CPC was challenged with ambient, NaCl and diesel soot particles, and the results show good agreement with modelled predictions, and confirm that counting of particles of diameters down to at least 10. nm was achievable. Possible applications are presented, including measurement of particles from a diesel car engine and comparison with a near PMP system. © 2014 Elsevier Ltd.
Resumo:
Guest host polymer thin films of polymethyl methacrylate (PMMA) incorporated with (4'-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were fabricated by spin coating and then poled by the method of corona-onset poling at elevated temperature. The absorption mechanism of the polymeric film, which is very important for the optical transmission losses and directly relates to the orientation of chromophore NAEC in polymer PMMA, was investigated in detail. From the UV-visible absorption spectra for NAEC/PMMA film before and after being poled, we determined the change of absorption coefficient kappa with the wavelength and approximately calculated the maximum absorption A(parallel tomax) as 3.46 for incident light propagating parallel through the film, i.e. the ordinary polarized light, which cannot be directly measured in the spectro photometer. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Films of high glass' transition temperature polymer polyetherketone doped with chromophore 2,2'[4-[(5-nitro-2-thiazolyl)azophenyl]-amino]-bisethanol NTAB) were prepared, poled by the corona-onset poling setup which includes a grid voltage making the surface-charge distribution uniform at elevated temperature. The thickness of the films was measured by the Model 2010 Prism Coupler system. Second harmonic generation d(33) was measured by the second harmonic generation method, and the d33 is 38.12 pm/V at 1064 nm under the absorption correction. The nonlinear optical activity maintains is 80% of its initial value. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Novel guest nonlinear optical (NLO) chromophore molecules (4-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were doped in poly (methyl methacrylate) (PMMA) host with a concentration of approximately 15% by weight. For a useful macroscopic electro-optic (EO) effect, these NLO molecules NAEC were arranged in a noncentrosymmetric structure in the host polymer by corona-onset poling at elevated temperature (COPET). For applying NAEC-PMMA polymer in optical devices such as EO switch, its optical properties have been investigated. The UV/Visible absorption spectra for the unpoled and poled polymer film were determined. The refractive index of the film was also determined from measurements of the coupling angles with the reflective intensity at 632.8 nm wavelength. Using the simple reflection technique, the EO coefficient 33 value was measured as 60 pm/V at 632.8 nm wavelength. The second-order nonlinear coefficient d(33) was characterized by the second-harmonic-generation (SHG) experimental setup and the calculated d(33) value reached 18.4 pm/V at 1064 nm wavelength. The relation between the second-order nonlinear coefficients d(33) and d(13) for the poled polymer film was also discussed in detail and the ratio d(33)/d(13) value was obtained as 3.3. (C) 2002 Kluwer Academic Publishers.
Resumo:
We investigated the temperature dependence (10-250 K) of the photoluminescence (PL) emission spectrum of self-organized Ge/Si(001) islands in a multilayer structure. With elevated temperature, we find that the thermally activated holes and electrons are gathered by the Ge islands in different ways. The holes drift from the wetting layer into the islands, while the electrons, confined in Si due to type-II band alignment, leak into the Ge islands by the electrostatic interaction with the holes accumulated there. It results in an increase of the integrated intensity of island-related PL at a certain temperature range and a reduction of the phonon energy in the phonon-assisted PL of the islands by involving a type-I transition into a type-II transition. (C) 2001 American Institute of Physics.
Resumo:
The polyetherketone (PEK-c) guest-host polymer films doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The films were poled by corona-onset poling at elevated temperature (COPET). The orientational order parameter of the chromophores NAEC in poled polymer film was determined by measuring the absorption spectra of the films before and after being poled. By using the two-level model, the measured dispersion of the refractive index of the polymer film, and the dispersion of the first hyperpolarizability of chromophore NAEC, the dispersion of the macroscopic second-order nonlinear optical (NLO) and linear electrooptic (EO) coefficients was evaluated for the NAEC/PEK-c guest-host polymer film. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The polyetherketone (PEK-c) guest-host polymer planar waveguides doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The waveguide films were poled by corona-onset poling at elevated temperature (COPET), and the corona poling setup includes a grid voltage making the surface-charge distribution uniform. By using the prism-in coupling method, the dark-line spectrum given by the reflected intensity versus the angle of incidence have been obtained, and the optical transmission losses of mth modes have been measured for the poled polymer waveguides at lambda = 632.8 nm. The measurement result showed that the optical loss of the fundamental mode is less than 0.7 dB cm(-1) for the TE polarization. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
InAs quantum dots inserted at the middle of a GaAs quantum well structure have been investigated by transmission electron microscopy and scanning transmission electron microscopy. We find that the growth condition of the overlayer on the InAs dots can lead to drastic changes in the structure of the dots. We attribute the changes to a combination of factors such as preferential growth of the overlayer above the wetting layers because of the strained surfaces and to the thermal instability of the InAs dots at elevated temperature. The result suggests that controlled sublimation, through suitable manipulation of the overlayer growth conditions, can be an effective tool to improve the structure of the self-organized quantum dots and can help tailor their physical properties to any specific requirements of the device applications. (C) 1998 American Institute of Physics.
Resumo:
Current-based microscopic defect analysis methods with optical filling techniques, namely current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC), have been used to study defect levels in a high resistivity silicon detector (p(+)-n-n(+)) induced by very high fluence neutron (VHFN) irradiation (1.7x10(15) n/cm(2)). As many as fourteen deep levels have been detected by I-DLTS. Arrhenius plots of the I-DLTS data have shown defects with energy levels ranging from 0.03 eV to 0.5 eV in the energy band gap. Defect concentrations of relatively shallow levels (E(t) < 0.33 eV) are in the order of 10(13)cm(-3), while those for relatively deep levels (E(t) > 0.33 eV) are in the order of 10(14) cm(-3). TSC data have shown similar defect spectra. A full depletion voltage of about 27,000 volts has been estimated by C-V measurements for the as-irradiated detector, which corresponds to an effective space charge density (N-eff) in the order of 2x10(14) cm(-3). Both detector leakage current and full depletion voltage have been observed to increase with elevated temperature annealing (ETA). The increase of the full depletion voltage corresponds to the increase of some deep levels, especially the 0.39 eV level. Results of positron annihilation spectroscopy have shown a decrease of total concentration of vacancy related defects including vacancy clusters with ETA, suggesting the breaking up of vacancy clusters as possible source of vacancies for the formation of single defects during the reverse anneal.
Resumo:
Experimental study of the reverse annealing of the effective concentration of ionized space charges (N-eff, also called effective doping or impurity concentration) of neutron irradiated high resistivity silicon detectors fabricated on wafers with various thermal oxides has been conducted at room temperature (RT) and elevated temperature (ET). Various thermal oxidations with temperatures ranging from 975 degrees C to 1200 degrees C with and without trichlorethane (TCA), which result in different concentrations of oxygen and carbon impurities, have been used. It has been found that, the RT annealing of the N-eff is hindered initially (t < 42 days after the radiation) for detectors made on the oxides with high carbon concentrations, and there was no carbon effect on the long term (t > 42 days after the radiation) N-eff reverse annealing. No apparent effect of oxygen on the stability of N-eff has been observed at RT. At elevated temperature (80 degrees C), no significant difference in annealing behavior has been found for detectors fabricated on silicon wafers with various thermal oxides. It is apparent that for the initial stages (first and/or second) of N-eff reverse annealing, there may tie no dependence on the oxygen and carbon concentrations in the ranges studied.