997 resultados para Electron Diffusion
Resumo:
We outline a scheme to accomplish measurements of a solid state double well system (DWS) with both one and two electrons in nonlocalized bases. We show that, for a single particle, measuring the local charge distribution at the midpoint of a DWS using a SET as a sensitive electrometer amounts to performing a projective measurement in the parity (symmetric/antisymmetric) eigenbasis. For two-electrons in a DWS, a similar configuration of SET results in close-to-projective measurement in the singlet/triplet basis. We analyze the sensitivity of the scheme to asymmetry in the SET position for some experimentally relevant parameter, and show that it is experimentally realizable.
Resumo:
Phosphoniobate glasses with composition (mol%) (100-x) NaPO(3)-xNb(2)O(5) ( x varying from 11 to 33) were prepared and characterized by means of thermal analysis, Fourier transform infrared spectroscopy, Raman scattering and (31)P nuclear magnetic resonance. The addition of Nb(2)O(5) to the polyphosphate base glass leads to depolymerization of the metaphosphate structure. Different colors were observed and assigned as indicating the presence of Nb(4+) ions, as confirmed by electron paramagnetic resonance measurements. The color was observed to depend on the glass composition and melting temperature as well. Er(3+) containing samples were also prepared. Strong emission in the 1550 nm region was observed. The Er(3+4)I(15/2) emission quantum efficiency was observed to be 90% and the quenching concentration was observed to be 1.1 mol%( 1.45 x 10(20) ions cm(-3)). Planar waveguides were prepared by Na(+)-K(+)-Ag(+) ion exchange with Er(3+) containing samples. Optical parameters of the waveguides were measured at 632.8, 543.5 and 1550 nm by the prism coupling technique as a function of the ion exchange time and Ag(+) concentration. The optimized planar waveguides show a diffusion depth of 5.9 mu m and one propagating mode at 1550 nm.
Resumo:
In this work, an investigation of the electrical and electrochemical properties responsible for the energy storage capability of nanocomposites has been carried out. We demonstrate that, in the case of the V2O5 xerogel and the nanocomposites polypyrrole (Ppy)/V2O5 and polyaniline (PANI)/V2O5, the quadratic logistic equation (QLE) can be used to fit the inverse of the resistance values as a function of the injected charge in non-steady-state conditions. This contributes to a phenomenological understanding of the lithium ion and electron transport. The departure of the experimental curve from the fitting observed for the V2O5 xerogel can be attributed to the trapping sites formed during the lithium electroinsertion, which was observed by electrochemical impedance spectroscopy. The amount of trapping sites was obtained on the basis of the QLE. Similar values used to fit the inverse of the resistance were also used to fit the absorbance changes, which is also associated with the small polaron hopping from the V(IV) to the V(V) sites. On the other hand, there was good agreement between the experimental and the theoretical data when the profile of the inverse of the resistance as a function of the amount of inserted lithium ions of the nanocomposites Ppy/V2O5 and PANI/ V2O5 was concerned. We suggest that the presence of the conducting polymers is responsible for the different electrical profile of the V2O5 xerogel compared with those of the nanocomposites. In the latter case, interactions between the lithium ions and oxygen atoms from V2O5 are shielded, thus decreasing the trapping effect of lithium ions in the V2O5 sites. The different values of the lithium ion diffusion coefficient into these intercalation materials are in agreement with this hypothesis.
Resumo:
WO(3)/chitosan and WO(3)/chitosan/poly(ethylene oxide) (PEO) films were prepared by the layer-by-layer method. The presence of chitosan enabled PEO to be carried into the self-assembled structure, contributing to an increase in the Li(+) diffusion rate. On the basis of the galvanostatic intermittent titration technique (GITT) and the quadratic logistic equation (QLE), a spectroelectrochemical method was used for determination of the ""optical"" diffusion coefficient (D(op)), enabling analysis of the Li(+) diffusion rate and, consequently, the coloration front rate in these host matrices. The D(op) values within the WO(3)/chitosan/PEO film were significantly higher than those within the WO(3)/chitosan film, mainly for higher values of injected charge. The presence of PEO also ensured larger accessibility to the electroactive sites, in accordance with the method employed here. Hence, this spectroelectrochemical method allowed us to separate the contribution of the diffusion process from the number of accessible electroactive sites in the materials, thereby aiding a better understanding of the useful electrochemical and electrochromic properties of these films for use in electrochromic devices. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background and Purpose-The Echoplanar Imaging Thrombolysis Evaluation Trial ( EPITHET) tests the hypothesis that perfusion-weighted imaging (PWI)-diffusion-weighted imaging (DWI) mismatch predicts the response to thrombolysis. There is no accepted standardized definition of PWI-DWI mismatch. We compared common mismatch definitions in the initial 40 EPITHET patients. Methods-Raw perfusion images were used to generate maps of time to peak (TTP), mean transit time (MTT), time to peak of the impulse response (Tmax) and first moment transit time (FMT). DWI, apparent diffusion coefficient ( ADC), and PWI volumes were measured with planimetric and thresholding techniques. Correlations between mismatch volume (PWIvol-DWIvol) and DWI expansion (T2(Day) (90-vol)-DWIAcute-vol) were also assessed. Results-Mean age was 68 +/- 11, time to MRI 4.5 +/- 0.7 hours, and median National Institutes of Health Stroke Scale (NIHSS) score 11 (range 4 to 23). Tmax and MTT hypoperfusion volumes were significantly lower than those calculated with TTP and FMT maps (P < 0.001). Mismatch >= 20% was observed in 89% (Tmax) to 92% (TTP/FMT/MTT) of patients. Application of a +4s ( relative to the contralateral hemisphere) PWI threshold reduced the frequency of positive mismatch volumes (TTP 73%/FMT 68%/Tmax 54%/MTT 43%). Mismatch was not significantly different when assessed with ADC maps. Mismatch volume, calculated with all parameters and thresholds, was not significantly correlated with DWI expansion. In contrast, reperfusion was correlated inversely with infarct growth (R= -0.51; P = 0.009). Conclusions-Deconvolution and application of PWI thresholds provide more conservative estimates of tissue at risk and decrease the frequency of mismatch accordingly. The precise definition may not be critical; however, because reperfusion alters tissue fate irrespective of mismatch.
The states, diffusion, and concentration distribution of water in radiation-formed PVA/PVP hydrogels
Resumo:
Hydrogels with various compositions of polyvinyl alcohol (PVA) and poly(1-vinyl-2-pyrrolidinone) (PVP) were prepared by irradiating mixtures of PVA and PVP in aqueous solutions with gamma-rays from Co-60 sources at room temperature. The states of water in the hydrogels were characterized using DSC and NMR T-2 relaxation measurements and the kinetics of water diffusion in the hydrogels were studied by sorption experiments and NMR imaging. The DSC endothermic peaks in the temperature range -10 to +10 degrees C implied that there are at least two kinds of freezable water present in the matrix. The difference between the total water content and the freezable water content was refer-red to as bound water, which is not freezable. The weight fraction of water at which only nonfreezable water is present in a hydrogel with F-VP = 0.19 has been estimated to be g(H2O)/g(Polymer) = 0.375. From water sorption experiments, it was demonstrated that the early stage of the diffusion of water into the hydrogels was Fickian. A curve-fit of the early-stage experimental data to the Fickian model allowed determination of the water diffusion coefficient, which was found to lie between 1.5 x 10(-11) m(2) s(-1) and 4.5 x 10(-11) m(2) s(-1), depending on the polymer composition, the cross-link density, and the temperature. It was also found that the energy barrier for diffusion of water molecules into PVA/PVP hydrogels was approximate to 24 kJ mol(-1). Additionally, the diffusion coefficients determined from NMR imaging of the volumetric swelling of the gels agreed well with the results obtained by the mass sorption method.
Resumo:
We conduct a theoretical analysis to investigate the double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones when they are heated uniformly from below. The fault zone is assumed to be more permeable than its surrounding rocks. In particular, we have derived exact analytical solutions to the total critical Rayleigh numbers of the double diffusion-driven convective flow. Using the corresponding total critical Rayleigh numbers, the double diffusion-driven convective instability of a fluid-saturated three-dimensional geological fault zone system has been investigated. The related theoretical analysis demonstrates that: (1) The relative higher concentration of the chemical species at the top of the three-dimensional geological fault zone system can destabilize the convective flow of the system, while the relative lower concentration of the chemical species at the top of the three-dimensional geological fault zone system can stabilize the convective flow of the system. (2) The double diffusion-driven convective flow modes of the three-dimensional geological fault zone system are very close each other and therefore, the system may have the similar chance to pick up different double diffusion-driven convective flow modes, especially in the case of the fault thickness to height ratio approaching 0. (3) The significant influence of the chemical species diffusion on the convective instability of the three-dimensional geological fault zone system implies that the seawater intrusion into the surface of the Earth is a potential mechanism to trigger the convective flow in the shallow three-dimensional geological fault zone system.
Resumo:
Background: The presence of coronary artery calcium (CAC) is an independent marker of increased risk of cardiovascular disease (CVD) events and mortality. However, the predictive value of thoracic aorta calcification (TAC), which can be additionally identified without further scanning during assessment of CAC, is unknown. Methods: We followed a cohort of 8401 asymptomatic individuals (mean age: 53 +/- 10 years, 69% men) undergoing cardiac risk factor evaluation and TAC and CAC testing with electron beam computed tomography. Multivariable Cox proportional hazards models were developed to predict all-cause mortality based on the presence of TAC. Results: During a median follow-up period of 5 years, 124 (1.5%) deaths were observed. Overall survival was 96.9% and 98.9% for those with and without detectable TAC, respectively (p < 0.0001). Compared to those with no TAC, the hazard ratio for mortality in the presence of TAC was 3.25 (95% CI: 2.28-4.65, p < 0.0001) in unadjusted analysis. After adjusting for age, gender, hypertension, dyslipidemia, diabetes mellitus, smoking and family history of premature coronary artery disease, and presence of CAC the relationship remained robust (HR 1.61, 95% CI: 1.10-2.27, p = 0.015). Likelihood ratio chi(2) statistics demonstrated that the addition of TAC contributed significantly in predicting mortality to traditional risk factors alone (chi(2) = 13.62, p = 0.002) as well as risk factors + CAC (chi(2) = 5.84, p = 0.02) models. Conclusion: In conclusion, the presence of TAC was associated with all-cause mortality in our study; this relationship was independent of conventional CVD risk factors as well as the presence of CAC. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
OBJECTIVE. Toxic leukoencephalopathy may present acutely or subacutely with symmetrically reduced diffusion in the periventricular and supraventricular white matter, hereafter referred to as periventricular white matter. This entity may reverse both on imaging and clinically. However, a gathering together of the heterogeneous causes of this disorder as seen on MRI with diffusion-weighted imaging (DWI) and an analysis of their likelihood to reverse has not yet been performed. Our goals were to gather causes of acute or subacute toxic leukoencephalopathy that can present with reduced diffusion of periventricular white matter in order to promote recognition of this entity, to evaluate whether DWI with apparent diffusion coefficient (ADC) values can predict the extent of chronic FLAIR abnormality ( imaging reversibility), and to evaluate whether DWI can predict the clinical outcome ( clinical reversibility). MATERIALS AND METHODS. Two neuroradiologists retrospectively reviewed the MRI examinations of 39 patients with acute symptoms and reduced diffusion of periventricular white matter. The reviewers then scored the extent of abnormality on DWI and FLAIR. ADC ratios of affected white matter versus the unaffected periventricular white matter were obtained. Each patient`s clinical records were reviewed to determine the cause and clinical outcome. Histology findings were available in three patients. Correlations were calculated between the initial MRI markers and both the clinical course and the follow-up extent on FLAIR using Spearman`s correlation coefficient. RESULTS. Of the initial 39 patients, seven were excluded because of a nontoxic cause (hypoxic-ischemic encephalopathy [HIE] or congenital genetic disorders) or because of technical errors. In the remaining 32 patients, no correlation was noted between any of the initial MRI markers (percentage of ADC reduction, DWI extent, or FLAIR extent) with the clinical outcome. Three patients had histologic correlation. However, moderate correlation was seen between the extent of abnormality on initial FLAIR and the extent on follow-up FLAIR (r = 0.441, p = 0.047). Of the 13 patients who underwent repeat MRI at 21 days or longer, the reduced diffusion resolved in all but one. Significant differences were noted between ADC values in affected white matter versus unaffected periventricular white matter on initial (p < 0.0001) but not on follow-up MRI (p = 0.13), and in affected white matter on initial versus follow-up (p = 0.0014) in those individuals who underwent repeat imaging on the same magnet (n = 9), confirming resolution of the DWI abnormalities. CONCLUSION. Acute toxic leukoencephalopathy with reduced diffusion may be clinically reversible and radiologically reversible on DWI, and may also be reversible, but to a lesser degree, on FLAIR MRI. None of the imaging markers measured in this study appears to correlate with clinical outcome, which underscores the necessity for prompt recognition of this entity. Alerting the clinician to this potentially reversible syndrome can facilitate treatment and removal of the offending agent in the early stages.
Resumo:
We theoretically study the Hilbert space structure of two neighboring P-donor electrons in silicon-based quantum computer architectures. To use electron spins as qubits, a crucial condition is the isolation of the electron spins from their environment, including the electronic orbital degrees of freedom. We provide detailed electronic structure calculations of both the single donor electron wave function and the two-electron pair wave function. We adopted a molecular orbital method for the two-electron problem, forming a basis with the calculated single donor electron orbitals. Our two-electron basis contains many singlet and triplet orbital excited states, in addition to the two simple ground state singlet and triplet orbitals usually used in the Heitler-London approximation to describe the two-electron donor pair wave function. We determined the excitation spectrum of the two-donor system, and study its dependence on strain, lattice position, and interdonor separation. This allows us to determine how isolated the ground state singlet and triplet orbitals are from the rest of the excited state Hilbert space. In addition to calculating the energy spectrum, we are also able to evaluate the exchange coupling between the two donor electrons, and the double occupancy probability that both electrons will reside on the same P donor. These two quantities are very important for logical operations in solid-state quantum computing devices, as a large exchange coupling achieves faster gating times, while the magnitude of the double occupancy probability can affect the error rate.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative intersite hopping amplitudes (t < 0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t > 0 a large enhancement of the effective mass, itinerant ferromagnetism, and a metallic phase with a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. The different behavior encountered is a consequence of the larger noninteracting density of states (DOS) at the Fermi level for t > 0 than for t < 0, which effectively enhances the mass and the scattering amplitude of the quasiparticles. The shape of the DOS is crucial for the occurrence of ferromagnetism as for t > 0 the energy cost of polarizing the system is much smaller than for t < 0. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e., ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. The transport and magnetic properties measured in NaxCoO2 are consistent with DMFT predictions of a metal close to the Mott insulator and we discuss the role of Na ordering in driving the system towards the Mott transition. We propose that the Curie-Weiss metal phase observed in NaxCoO2 is a consequence of the crossover from a bad metal with incoherent quasiparticles at temperatures T > T-* and Fermi liquid behavior with enhanced parameters below T-*, where T-* is a low energy coherence scale induced by strong local Coulomb electron correlations. Our analysis also shows that the one band Hubbard model on a triangular lattice is not enough to describe the unusual properties of NaxCoO2 and is used to identify the simplest relevant model that captures the essential physics in NaxCoO2. We propose a model which allows for the Na ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.
Resumo:
The intercalated discs of working myocardium and Purkinje fibers of the monkey heart were examined by scanning and transmission electron microscopy. The NaOH/ultrasonication technique resulted in the digestion of connective tissue and a separation of the intercellular junctions of intercalated discs, such that these could be visualized three-dimensionally. The intercalated discs of ventricular myocytes, atrial myocytes and Purkinje fibers vary considerably in number and configuration, as do the intercalated discs of the three different layers of the ventricular myocardium. Myocytes in the subepicardial, middle and subendocardial layers of the ventricle have 1-3, 4-5 and 5-6 intercalated discs at the end of these cells, respectively, Those in the endocardial layer are characterized by the presence of small laterally-placed intercalated discs. Atrial myocytes and Purkinje fibers usually only have 1-2 intercalated discs, Individual intercalated discs in ventricular myocytes have complicated stairs with 10-30 steps and corresponding risers, while those of atrial myocytes and Purkinje fibers have simple stairs with 1-3 steps and risers, Steps equivalent to the plicate segments are characterized by densely-packed microplicae and finger-like microprojections which greatly increase surface area in vertricular myocytes, Microprojections in atrial myocytes and Purkinje fibers are sparse by comparison, Risers equivalent to the interplicate segments containing large gap junctional areas are most numerous in left ventricular myocytes, followed by right ventricular myocytes, Purkinje fibers and atrial myocytes in decreasing order. The geometric arrangement of the various types of myocytes may be related with impulse propagation. Large intercalated discs of cell trunks and series branches may participate in longitudinal propagation, while small laterally-placed ones may be the site of transverse propagation.