996 resultados para Electromyographic Activity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anterior knee pain (AKP) is common and has been argued to be related to poor patellofemoral joint control due to impaired coordination of the vasti muscles. However, there are conflicting data. Changes in motor unit firing may provide more definitive evidence. Synchronization of motor unit action potentials (MUAPs) in vastus medialis obliquus (VMO) and vastus lateralis (VL) may contribute to coordination in patellofemoral joint control. We hypothesized that synchronization may be reduced in AKP. Recordings of single MUAPs were made from VMO and multiunit electromyograph (EMG) recordings were made from VL. Averages of VL EMG recordings were triggered from the single MUAPs in VMO. Motor units in VL firing in association with the VMO motor units would appear as a peak in the VL EMG average. Data were compared to previous normative data. The proportion of trials in which a peak was identified in the triggered averages of VL EMG was reduced in people with AKP (38%) compared to controls (90%). Notably, although 80% of subjects had values less than controls, 20% were within normal limits. These results provide new evidence that motor unit synchronization is modified in the presence of pain and provide evidence for motor control dysfunction in AKP. Perspective: This study shows that coordination of motor units between the medial and lateral vasti muscles in people with anterior knee pain is reduced compared to people without knee pain. It confirms that motor control dysfunction is a factor in this condition and has implications for selection of rehabilitation strategies. (c) 2005 by the American Pain Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: To investigate motor unit synchronization between medial and lateral vasti and whether such synchronization differs in closed and open chain tasks. Design: Electromyographic recordings of single motor unit action potentials were made from the vastus medialis obliquus (VMO) and multiunit recordings from vastus lateralis during isometric contractions at 30 degrees of knee flexion in closed and open chain conditions. Setting: Laboratory. Participants: Five volunteers with no history of knee pain (age, 30 +/- 3.32y). Interventions: Not applicable. Main Outcome Measure: The degree of synchronization between motor unit firing was evaluated by identifying peaks in the electromyographic averages of the vastus lateralis, triggered from motor unit action potentials in the VMO, and the proportion of power in the power spectral density of the triggered average at the firing frequency of the reference motor unit. The proportion of cases in which there was significant power and peaks in the triggered averages was calculated. Results: The proportion of trials with peaks in the triggered averages of the vastus lateralis electromyographic activity was greater than 61.5% in all tasks, and there was a significantly greater proportion of cases where power in the spectrum was greater than 7.5% (P = .01) for the closed chain condition. Conclusions: There was a high proportion of synchronized motor units between the 2 muscles during isometric contractions, with evidence for greater common drive between the VMO and vastus lateralis in closed chain tasks. This has implications for rehabilitation because it suggests that closed chain tasks may generate better coordination between the vasti muscles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Voluntary limb movements are associated with involuntary and automatic postural adjustments of the trunk muscles. These postural adjustments occur prior to movement and prevent unwanted perturbation of the trunk. In low back pain, postural adjustments of the trunk muscles are altered such that the deep trunk muscles are consistently delayed and the superficial trunk muscles are sometimes augmented. This alteration of postural adjustments may reflect disruption of normal postural control imparted by reduced central nervous system resources available during pain, so-called pain interference, or reflect adoption of an alternate postural adjustment strategy. Methods: We aimed to clarify this by recording electromyographic activity of the upper (obliquus extemus) and lower (transversus abdominis/obliquus internus) abdominal muscles during voluntary arm movements that were coupled with painful cutaneous stimulation at the low back. If the effect of pain on postural adjustments is caused by pain interference, it should be greatest at the onset of the stimulus, should habituate with repeated exposure, and be absent immediately when the threat of pain is removed. Sixteen patients performed 30 forward movements of the right arm in response to a visual cue (control). Seventy trials were then conducted in which arm movement was coupled with pain (pain trials) and then a further 70 trials were conducted without the pain stimulus (no pain trials). Results: There was a gradual and increasing delay of transversus abdominis/obliquus internus electromyograph and augmentation of obliquus externus during the pain trials, both of which gradually returned to control values during the no pain trials. Conclusion: The results suggest that altered postural adjustments of the trunk muscles during pain are not caused by pain interference but are likely to reflect development and adoption of an alternate postural adjustment strategy, which may serve to limit the amplitude and velocity of trunk excursion caused by arm movement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activity of the vasti has been argued to vary through knee range of movement due to changes in passive support of the patellofemoral joint and the relative contribution of these muscles to knee extension. Efficient function of the knee is dependent on optimal control of the patellofemoral joint, largely through coordinated activity of the medial and lateral quadriceps. Motor unit synchronization may provide a mechanism to coordinate the activity of vastus medialis (VMO) and vastus lateralis (VL), and may be more critical in positions of reduced passive support for the patellofemoral joint (i.e., full extension). Therefore, the aim of this study was to determine whether the degree of motor unit synchronization between the vasti muscles is dependent on joint angle. Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VMO and multiunit recordings from VL during isometric contractions of the quadriceps at 0 degrees, 30 degrees, and 60 degrees of knee flexion. The degree of synchronization between motor unit firing was evaluated by identification of peaks in the rectified EMG averages of VL, triggered from MUA-Ps in VMO. The proportion of cases in which there was a significant peak in the triggered averages was calculated. There was no significant difference in the degree of synchronization between the vasti at different knee angles (p = 0.57). These data suggest that this basic coordinative mechanism between the vasti muscles is controlled consistently throughout knee range of motion, and is not augmented at specific angles where the requirement for dynamic control of stability is increased. (D 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Kinesio Taping (KT) has been used in healthy people to improve neuromuscular performance, however, few studies have evaluated its chronic effects, despite being suggested. Objective: To analyze the chronic effects of KT on neuromuscular performance of the quadriceps, the oscillation of the center of pressure and lower limb function in healthy women. Methods: blinded, randomized, controlled trial, composed of 60 women (mean age 21.9 ± 3.3 years and BMI 22.3 ± 2.2 kg / m2) submitted to the evaluation of oscillation of the center of pressure through the baropodometry, the lower limb function by the hop test, isokinetic knee performance, the electromyographic activity of the vastus lateralis (VL) and joint position sense of the knee (JPS). Then, participants were randomly divided into three groups of twenty: control - did not apply the KT; placebo - application of KT without tension on the quadriceps; Kinesio Taping - application of KT with tension in the same muscle group. The evaluations were conducted in five moments: prior to application of KT, immediately after the application, 24h, 48h after application and 24 hours after its removal (72h). SPSS 20.0 was used for statistical analysis. The KS test was used to verify the data normality, the Levene test for homogeneity of variances and a mixed-model ANOVA 3x5 to check intra and inter-group differences. Results: there was no difference in peak torque, the power, nor the electromyographic activity or SPA (p> 0.05) between groups. The displacement speed of center of pressure reduced immediately after the application on kinesio taping group (p <0.001), but with no differences between the groups (p = 0.28). There was a reduction in the time of peak torque among the three groups in the evaluations after KT application (p <0.001) and an increase in single hop in all groups (p <0.001), but with no differences between them. Conclusion: KT can not change, in a chronic way, the lower limb function, the oscillation of the center of pressure, the isokinetic performance, the JPS of the knee and the electromyographic activity of VL muscle in healthy women.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le système vestibulaire et le cortex moteur participent au contrôle de la posture, mais la nature de leurs interactions est peu documentée. Afin de caractériser les interactions vestibulo-corticales qui sous-tendent le contrôle de l’équilibre en position debout, l’activité électromyographique (EMG) du soléaire (SOL), du tibial antérieur (TA) et du péronier long (PERL) de la jambe droite a été enregistrée chez 14 sujets sains. La stimulation galvanique vestibulaire (GVS) a été appliquée avec la cathode derrière l’oreille droite ou gauche à différents intervalles inter-stimulus (ISIs) avant ou après la stimulation magnétique transcrânienne induisant des potentiels moteurs évoqués (MEPs) au niveau des muscles enregistrés. Lorsque que la cathode était à droite, une inhibition des MEPs a été observée au niveau du SOL à un ISI de 40 et 130 ms et une facilitation des MEPS a été observée au niveau TA à un ISI de 110 ms. Lorsque la cathode était à gauche, une facilitation des MEPs a été observée au niveau du SOL, du TA et du PERL à un ISI de 50, -10 et 0 ms respectivement. L’emplacement de ces interactions sur l’axe neural a été estimé en fonction des ISIs et en comparant l’effet de la GVS sur les MEPs à son effet sur l’EMG de base et sur le réflexe-H. Selon ces analyses, les modulations observées peuvent avoir lieu au niveau spinal ou au niveau supraspinal. Ces résultats suggèrent que les commandes de la voie corticospinale peuvent être modulées par le système vestibulaire à différents niveaux de l’axe neuronal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le système vestibulaire et le cortex moteur participent au contrôle de la posture, mais la nature de leurs interactions est peu documentée. Afin de caractériser les interactions vestibulo-corticales qui sous-tendent le contrôle de l’équilibre en position debout, l’activité électromyographique (EMG) du soléaire (SOL), du tibial antérieur (TA) et du péronier long (PERL) de la jambe droite a été enregistrée chez 14 sujets sains. La stimulation galvanique vestibulaire (GVS) a été appliquée avec la cathode derrière l’oreille droite ou gauche à différents intervalles inter-stimulus (ISIs) avant ou après la stimulation magnétique transcrânienne induisant des potentiels moteurs évoqués (MEPs) au niveau des muscles enregistrés. Lorsque que la cathode était à droite, une inhibition des MEPs a été observée au niveau du SOL à un ISI de 40 et 130 ms et une facilitation des MEPS a été observée au niveau TA à un ISI de 110 ms. Lorsque la cathode était à gauche, une facilitation des MEPs a été observée au niveau du SOL, du TA et du PERL à un ISI de 50, -10 et 0 ms respectivement. L’emplacement de ces interactions sur l’axe neural a été estimé en fonction des ISIs et en comparant l’effet de la GVS sur les MEPs à son effet sur l’EMG de base et sur le réflexe-H. Selon ces analyses, les modulations observées peuvent avoir lieu au niveau spinal ou au niveau supraspinal. Ces résultats suggèrent que les commandes de la voie corticospinale peuvent être modulées par le système vestibulaire à différents niveaux de l’axe neuronal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciado em Fisioterapia

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Projeto de Graduação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Licenciado em Fisioterapia

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mouth breathing may cause changes in muscle activity, because an upper airway obstruction leads may cause a person to extend his/her head forward, demanding a higher inspiratory effort on the accessory muscles (sternocleidomastoids). This purpose of this study is to compare, using electromyography (EMG), the activity pattern the sternocleidomastoid and upper trapezius muscles in mouth breathing children and nasal breathing children. Forty-six children, ages 8-12 years, 33 male and 13 female were included. The selected children were divided into two groups: Group I consisted of 26 mouth breathing children, and Group II, 20 nasal breathing children. EMG recordings were made using surface electrodes bilaterally in the areas of the sternocleidomastoideus and upper trapezius muscles, while relaxed and during maximal voluntary contraction. The data were analyzed using the Kruskall-Wallis statistical test. The results indicated higher activity during relaxation and lower activity during maximal voluntary contraction in mouth breathers when compared to the nasal breathers. It is suggested that the activity pattern of the sternocleidomastoid and upper trapezius muscles differs between mouth breathing children and nasal breathing children. This may be attributed to changes in body posture which causes muscular imbalance. Because of the limitations of surface EMG, the results need to be confirmed by adding force measurements and repeating the experiments with matched subjects. Copyright © 2004 by CHROMA, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Respiratory activity of the diaphragm and other respiratory muscles is normally co-ordinated with their other functions, such as for postural control of the trunk when the limbs move. The integration may occur by summation of two inputs at the respiratory motoneurons. The present study investigated whether postural activity of the diaphragm changed when respiratory drive increased with hypercapnoea. 2. Electromyographic (EMG) recordings of the diaphragm and other trunk muscles were made with intramuscular electrodes in 13 healthy volunteers. Under control conditions and while breathing through increased dead-space,subjects made rapid repetitive arm movements to disturb the stability of the spine for four periods each lasting 10 s, separated by 50 s. 3. End-tidal CO2, and ventilation increased for the first 60-120 s of the trial then reached a plateau. During rapid arm movement at the start of dead-space breathing, diaphragm EMG became tonic with superimposed modulation at the frequencies of respiration and arm movement. However, when the arm was moved after 60 s of hypercapnoea, the tonic diaphragm EMG during expiration and the phasic activity with arm movement were reduced or absent. Similar changes occurred for the expiratory muscle transversus abdominis, but not for the erector spinae. The mean amplitude of intra-abdominal pressure and the phasic changes with arm movement were reduced after 60 s of hypercapnoea. 4. The present data suggest that increased central respiratory drive may attenuate the postural commands reaching motoneurons. This attenuation can affect the key inspiratory and expiratory muscles and is likely to be co-ordinated at a pre-motoneuronal site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Third molar extraction surgery is one of the most frequently performed procedures in the areas of buccal-maxillofacial traumatology and surgery. The post-surgery evolution was evaluated based on the clinical evidence obtained so far. The objective of this study was to analyze the post-surgery clinical evolution of the masseter muscle by means of surface electromyography, to evaluate muscle activity. Four analyses were performed: one pre-surgery, to register the normal activity, and three in post-surgery: on the 7(th), 14(th) and 21(st) postoperative days, in a sample of 30 patients. On the 21(st) day, there was near normal recovery of the electrical signal of the masseter in women, but in men this activity did not reach normal levels. Surface electromyography is a safe and reliable tool for post-surgery evolution control of masseter function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The normalized electromyographic characteristics of masticatory muscles in patients with temporomandibular joint disorders (TMD) and healthy controls were compared. Thirty TMD patients (15 men, 15 women, mean age 23 years) with long lasting pain (more than 6 months), and 20 control subjects matched for sex and age were examined. All patients had arthrogenous TMD according to the Research Diagnostic Criteria for TMD (RDC/TMD). Surface electromyography of masseter and temporal muscles was performed during maximum teeth clenching either on cotton rolls or in intercuspal position. Standardized EMG indices and the median power frequency were obtained, and compared between the two groups and sexes using ANOVAs. During clenching, the TMD patients had larger asymmetry in their temporalis muscles, larger temporalis activity relative to masseter, and reduced mean power frequencies than the control subjects (p < 0.05, ANOVA). In both groups, the mean power frequencies of the temporalis muscles were larger than those of the masseter muscles (p < 0.001). No sex related differences, and no sex x group interactions were found. In conclusion, young adult patients with long lasting TMD have an increased and more asymmetric standardized activity of their temporalis anterior muscle, and reduced mean power frequencies, relative to healthy controls. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P>The determination of normal parameters is an important procedure in the evaluation of the stomatognathic system. We used the surface electromyography standardization protocol described by Ferrario et al. (J Oral Rehabil. 2000;27:33-40, 2006;33:341) to determine reference values of the electromyographic standardized indices for the assessment of muscular symmetry (left and right side, percentage overlapping coefficient, POC), potential lateral displacing components (unbalanced contractile activities of contralateral masseter and temporalis muscles, TC), relative activity (most prevalent pair of masticatory muscles, ATTIV) and total activity (integrated areas of the electromyographic potentials over time, IMPACT) in healthy Brazilian young adults, and the relevant data reproducibility. Electromyography of the right and left masseter and temporalis muscles was performed during maximum teeth clenching in 20 healthy subjects (10 women and 10 men, mean age 23 years, s.d. 3), free from periodontal problems, temporomandibular disorders, oro-facial myofunctional disorder, and with full permanent dentition (28 teeth at least). Data reproducibility was computed for 75% of the sample. The values obtained were POC Temporal (88 center dot 11 +/- 1 center dot 45%), POC masseter (87 center dot 11 +/- 1 center dot 60%), TC (8 center dot 79 +/- 1 center dot 20%), ATTIV (-0 center dot 33 +/- 9 center dot 65%) and IMPACT (110 center dot 40 +/- 23 center dot 69 mu V/mu V center dot s %). There were no statistical differences between test and retest values (P > 0 center dot 05). The Technical Errors of Measurement (TEM) for 50% of subjects assessed during the same session were 1 center dot 5, 1 center dot 39, 1 center dot 06, 3 center dot 83 and 10 center dot 04. For 25% of the subjects assessed after a 6-month interval, the TEM were 0 center dot 80, 1 center dot 03, 0 center dot 73, 12 center dot 70 and 19 center dot 10. For all indices, there was good reproducibility. These electromyographic indices could be used in the assessment of patients with stomatognathic dysfunction.