981 resultados para Electrochemical Detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first electrochemical immunosensor (EI) for the detection of antibodies against deamidated gliadin peptides (DGP) is described here. A disposable nanohybrid screen-printed carbon electrode modified with DGP was employed as the transducer's sensing surface. Real serumsampleswere successfully assayed and the results were corroborated with an ELISA kit. The presented EI is a promising analytical tool for celiac disease diagnosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrochemical sensor has been developed for the determination of the herbicide bentazone, based on a GC electrode modified by a combination of multiwalled carbon nanotubes (MWCNT) with b-cyclodextrin (b-CD) incorporated in a polyaniline film. The results indicate that the b-CD/MWCNT modified GC electrode exhibits efficient electrocatalytic oxidation of bentazone with high sensitivity and stability. A cyclic voltammetric method to determine bentazone in phosphate buffer solution at pH 6.0, was developed, without any previous extraction, clean-up, or derivatization steps, in the range of 10–80 mmolL 1, with a detection limit of 1.6 mmolL 1 in water. The results were compared with those obtained by an established HPLC technique. No statistically significant differences being found between both methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human epidermal growth factor receptor 2 (HER2) is a breast cancer biomarker that plays a major role in promoting breast cancer cell proliferation and malignant growth. The extracellular domain (ECD) of HER2 can be shed into the blood stream and its concentration is measurable in the serum fraction of blood. In this work an electrochemical immunosensor for the analysis of HER2 ECD in human serum samples was developed. To achieve this goal a screen-printed carbon electrode, modified with gold nanoparticles, was used as transducer surface. A sandwich immunoassay, using two monoclonal antibodies, was employed and the detection of the antibody–antigen interaction was performed through the analysis of an enzymatic reaction product by linear sweep voltammetry. Using the optimized experimental conditions the calibration curve (ip vs. log[HER2 ECD]) was established between 15 and 100 ng/mL and a limit of detection (LOD) of 4.4 ng/mL was achieved. These results indicate that the developed immunosensor could be a promising tool in breast cancer diagnostics, patient follow-up and monitoring of metastatic breast cancer since it allows quantification in a useful concentration range and has an LOD below the established cut-off value (15 ng/mL).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2′-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented methodology favored Ab/Ag affinity and immunodetection of the antigen. The immunosensor design was evaluated by quartz-crystal microbalance with dissipation, atomic force microscopy, electrochemical impedance spectroscopy (EIS) and square-wave voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charge transfer resistance across the electrochemical set-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from glucose, urea and creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

6th Graduate Student Symposium on Molecular Imprinting

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2’-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The Anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented proposal favored Ab/Ag affinity. The immunosensor design was evaluated by Quartz-Crystal microbalance with Dissipation, Atomic Force Microscopy, Electrochemical Impedance Spectroscopy (EIS) and Square-Wave Voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charged transfer resistance across the electrochemical sep-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from Glucose, Urea and Creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes a novel use for the polymeric film, poly(o-aminophenol) (PAP) that was made responsive to a specific protein. This was achieved through templated electropolymerization of aminophenol (AP) in the presence of protein. The procedure involved adsorbing protein on the electrode surface and thereafter electroploymerizing the aminophenol. Proteins embedded at the outer surface of the polymeric film were digested by proteinase K and then washed away thereby creating vacant sites. The capacity of the template film to specifically rebind protein was tested with myoglobin (Myo), a cardiac biomarker for ischemia. The films acted as biomimetic artificial antibodies and were produced on a gold (Au) screen printed electrode (SPE), as a step towards disposable sensors to enable point-of-care applications. Raman spectroscopy was used to follow the surface modification of the Au-SPE. The ability of the material to rebind Myo was measured by electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The devices displayed linear responses to Myo in EIS and SWV assays down to 4.0 and 3.5 μg/mL, respectively, with detection limits of 1.5 and 0.8 μg/mL. Good selectivity was observed in the presence of troponin T (TnT) and creatine kinase (CKMB) in SWV assays, and accurate results were obtained in applications to spiked serum. The sensor described in this work is a potential tool for screening Myo in point-of-care due to the simplicity of fabrication, disposability, short time response, low cost, good sensitivity and selectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human chorionic gonadotropin (hCG) is a key diagnostic marker of pregnancy and an important biomarker for cancers in the prostate, ovaries and bladder and therefore of great importance in diagnosis. For this purpose, a new immunosensor of screen-printed electrodes (SPEs) is presented here. The device was fabricated by introducing a polyaniline (PANI) conductive layer, via in situ electropolymerization of aniline, onto a screen-printed graphene support. The PANI-coated graphene acts as the working electrode of a three terminal electrochemical sensor. The working electrode is functionalised with anti-hCG, by means of a simple process that enabled oriented antibody binding to the PANI layer. The antibody was attached to PANI following activation of the –COOH group at the Fc terminal. Functionalisation of the electrode was analysed and optimized using Electrochemical Impedance Spectroscopy (EIS). Chemical modification of the surface was characterised using Fourier transform infrared, and Raman spectroscopy with confocal microscopy. The graphene–SPE–PANI devices displayed linear responses to hCG in EIS assays from 0.001 to 50 ng mL−1 in real urine, with a detection limit of 0.286 pg mL−1. High selectivity was observed with respect to the presence of the constituent components of urine (urea, creatinine, magnesium chloride, calcium chloride, sodium dihydrogen phosphate, ammonium chloride, potassium sulphate and sodium chloride) at their normal levels, with a negligible sensor response to these chemicals. Successful detection of hCG was also achieved in spiked samples of real urine from a pregnant woman. The immunosensor developed is a promising tool for point-of-care detection of hCG, due to its excellent detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased levels of plasma oxLDL, which is the oxidized fraction of Low Density Lipoprotein (LDL), are associated with atherosclerosis, an inflammatory disease, and the subsequent development of severe cardiovascular diseases that are today a major cause of death in modern countries. It is therefore important to find a reliable and fast assay to determine oxLDL in serum. A new immunosensor employing three monoclonal antibodies (mAbs) against oxLDL is proposed in this work as a quick and effective way to monitor oxLDL. The oxLDL was first employed to produce anti-oxLDL monoclonal antibodies by hybridoma cells that were previously obtained. The immunosensor was set-up by selfassembling cysteamine (Cyst) on a gold (Au) layer (4 mm diameter) of a disposable screen-printed electrode. Three mAbs were allowed to react with N-hydroxysuccinimide (NHS) and ethyl(dimethylaminopropyl)carbodiimide (EDAC), and subsequently incubated in the Au/Cys. Albumin from bovine serum (BSA) was immobilized further to ensure that other molecules apart from oxLDL could not bind to the electrode surface. All steps were followed by various characterization techniques such as electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV). The analytical operation of the immunosensor was obtained by incubating the sensing layer of the device in oxLDL for 15 minutes, prior to EIS and SWV. This was done by using standard oxLDL solutions prepared in foetal calf serum, in order to simulate patient's plasma with circulating oxLDL. A sensitive response was observed from 0.5 to 18.0 mg mL 1 . The device was successfully applied to determine the oxLDL fraction in real serum, without prior dilution or necessary chemical treatment. The use of multiple monoclonal antibodies on a biosensing platform seemed to be a successful approach to produce a specific response towards a complex multi-analyte target, correlating well with the level of oxLDL within atherosclerosis disease, in a simple, fast and cheap way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work introduces two major changes to the conventional protocol for designing plastic antibodies: (i) the imprinted sites were created with charged monomers while the surrounding environment was tailored using neutral material; and (ii) the protein was removed from its imprinted site by means of a protease, aiming at preserving the polymeric network of the plastic antibody. To our knowledge, these approaches were never presented before and the resulting material was named here as smart plastic antibody material (SPAM). As proof of concept, SPAM was tailored on top of disposable gold-screen printed electrodes (Au-SPE), following a bottom-up approach, for targeting myoglobin (Myo) in a point-of-care context. The existence of imprinted sites was checked by comparing a SPAM modified surface to a negative control, consisting of similar material where the template was omitted from the procedure and called non-imprinted materials (NIMs). All stages of the creation of the SPAM and NIM on the Au layer were followed by both electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). AFM imaging was also performed to characterize the topography of the surface. There are two major reasons supporting the fact that plastic antibodies were effectively designed by the above approach: (i) they were visualized for the first time by AFM, being present only in the SPAM network; and (ii) only the SPAM material was able to rebind to the target protein and produce a linear electrical response against EIS and square wave voltammetry (SWV) assays, with NIMs showing a similar-to-random behavior. The SPAM/Au-SPE devices displayed linear responses to Myo in EIS and SWV assays down to 3.5 μg/mL and 0.58 μg/mL, respectively, with detection limits of 1.5 and 0.28 μg/mL. SPAM materials also showed negligible interference from troponin T (TnT), bovine serum albumin (BSA) and urea under SWV assays, showing promising results for point-of-care applications when applied to spiked biological fluids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new environmentally friendly Au nanoparticles (Au NPs) synthesis in glycerol by using ultraviolet irradiation and without extra-added stabilizers is described. The synthesis proposed in this work may impact on the non-polluting production of noble nanoparticles with simple chemicals normally found in standard laboratories. These Au NPs were used to modify a carbon paste electrode (CPE) without having to separate them from the reaction medium. This green electrode was used as an electrochemical sensor for the nitrite detection in water. At the optimum conditions the green sensor presented a linear response in the 2.0×10−7–1.5×10−5 M concentration range, a good detection sensitivity (0.268 A L mol−1), and a low detection limit of 2.0×10−7 M of nitrite. The proposed modified green CPE was used to determine nitrite in tap water samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, a glassy carbon electrode (GCE) modified with novel N-doped carbon nanotubes (CNT-N) functionalized with MnFe2O4 nanoparticles (MnFe2O4@CNT-N) has been prepared and applied for the electrochemical determination of caffeine (CF), acetaminophen (AC) and ascorbic acid (AA). The electrochemical behaviour of CF, AC and AA on the bare GCE, CNT-N/GCE and MnFe2O4@CNT-N/GCE were carefully investigated using cyclic voltammetry (CV) and square-wave voltammetry (SWV). Compared to bare GCE and CNT-N modified electrode, the MnFe2O4@CNT-N modified electrode can remarkably improve the electrocatalytic activity towards the oxidation of CF, AC and AA with an increase in the anodic peak currents of 52%, 50% and 55%, respectively. Also, the SWV anodic peaks of these molecules could be distinguished from each other at the MnFe2O4@CNT-N modified electrode with enhanced oxidation currents. The linear response ranges for the square wave voltammetric determination of CF, AC and AA were 1.0 × 10−6 to 1.1 × 10−3 mol dm−3, 1.0 × 10−6 to 1.0 × 10−3 mol dm−3 and 2.0 × 10−6 to 1.0 × 10−4 mol dm−3 with detection limit (S/N = 3) of 0.83 × 10−6, 0.83 × 10−6 and 1.8 × 10−6 mol dm−3, respectively. The sensitivity values at the MnFe2O4@CNT-N/GCE for the individual determination of AC, AA and CF and in the presence of the other molecules showed that the quantification of AA and CF show no interferences from the other molecules; however, AA and CF interfered in the determination of AC, with the latter molecule showing the strongest interference. Nevertheless, the obtained results show that MnFe2O4@CNT-N composite material acted as an efficient electrochemical sensor towards the selected biomolecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a norfloxacin selective modified glassy carbon electrode (GCE) based on a molecularly imprinted polymer (MIP) as electrochemical sensor was developed. A suspension of multi-walled carbon nanotubes (MWCNTs) was deposited on the electrode surface. Subsequently, a molecularly imprinted film was prepared by electropolymerization, via cyclic voltammetry of pyrrole (PPy) in the presence of norfloxacin (NFX) as the template molecule. A control electrode (NIP) was also prepared. Scanning electron microscopy (SEM) and cyclic voltammetry in a ferrocyanide solution were performed for morphological and electrochemical characterisation, respectively. Several experimental parameters were studied and optimised. For quantification purposes the MIP/MWCNT/GCE was immersed in NFX solutions for 10 min, and the detection was performed in voltammetric cell by square wave voltammetry. The proposed sensor presented a linear behaviour, between peak current intensity and logarithmic concentration of NFX between 1 × 10−7 and 8 × 10−6 M. The obtained results presented good precision, with a repeatability of 4.3% and reproducibility of 9% and the detection limit was 4.6 × 10−8 M (S/N = 3). The developed sensor displayed good selectivity and operational lifetime, is simple to fabricate and easy to operate and was successfully applied to the analysis of NFX in urine samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and application of a polyaniline/carbon nanotube (CNT) cyclodextrin matrix (PANI-β-CD/MWCNT)-based electrochemical sensor for the quantitative determination of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) and its main transformation product 4-chloro-2-methylphenol in natural waters are described. A simple cyclic voltammetry-based electrochemical methodology, in phosphate buffer solution at pH 6.0, was used to develop a method to determine both MCPA and 4-chloro-2-methylphenol, without any previous extraction or derivatization steps. A linear concentration range (10 to 50 μmol L−1) and detection limits of 1.1 and 1.9 μmol L−1, respectively, were achieved using optimized cyclic voltammetric parameters. The proposed method was successfully applied to the determination of MCPA and 4-chloro-2-methylphenol in natural water samples with satisfactory recoveries (94 to 107 %) and in good agreement with the results obtained by an established high-performance liquid chromatography technique, no significant differences being found between the methods. Interferences from ionic species and other herbicides used for broad-leaf weed control were shown to be small. The newly developed methodology was also successfully applied to MCPA photodegradation environmental studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes an electrochemical and quantum chemical investigation of the fipronil insecticide. Cyclic voltammetry (CV) and square wave voltammetry (SWV) experiments were performed over a graphite-polyurethane (GPU) composite electrode. The fipronil molecule presents an one?electron irreversible oxidation reaction. Profiting the SWV signal a square wave stripping voltammetry (SWSV) procedure to determine the fipronil molecule in a 0.10 mol L-1 Britton-Robinson buffer solution, pH 8.0 was developed with accumulation potential and time of 0.50 V and 120 s, respectively. The limits of detection and quantification were 0.80 and 2.67 ?g L-1, respectively. Recovery tests were performed in three natural waters samples with values ranging from 99.67 to 101.37%. Quantum chemical studies showed that the nitrogen atom of the pyrazole group is the most probable oxidation site of the fipronil molecule.