953 resultados para Electricity tariff
Resumo:
Electricity systems models are software tools used to manage electricity demand and the electricity systems, to trade electricity and for generation expansion planning purposes. Various portfolios and scenarios are modelled in order to compare the effects of decision making in policy and on business development plans in electricity systems so as to best advise governments and industry on the least cost economic and environmental approach to electricity supply, while maintaining a secure supply of sufficient quality electricity. The modelling techniques developed to study vertically integrated state monopolies are now applied in liberalised markets where the issues and constraints are more complex. This paper reviews the changing role of electricity systems modelling in a strategic manner, focussing on the modelling response to key developments, the move away from monopoly towards liberalised market regimes and the increasing complexity brought about by policy targets for renewable energy and emissions. The paper provides an overview of electricity systems modelling techniques, discusses a number of key proprietary electricity systems models used in the USA and Europe and provides an information resource to the electricity analyst not currently readily available in the literature on the choice of model to investigate different aspects of the electricity system.
Resumo:
In late 2008, the Government of the Republic of Ireland set a specific target that 10% of all vehicles in its transport fleet be powered by electricity by 2020 in order to meet European Union renewable energy targets and greenhouse gas emissions reduction targets. International there are similar targets. This is a considerable challenge as in 2009, transport accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the impacts of 10% electric vehicle charging on the single wholesale electricity market for the Republic of Ireland and Northern Ireland is examined. The energy consumed and the total carbon dioxide emissions generated under different charging scenarios is quantified and the results of the charging scenarios are compared to identify the best implementation strategy.
Resumo:
To meet European Union renewable energy and greenhouse gas emissions reduction targets the Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. However, reducing energy consumption and decreasing greenhouse gas emissions in transport is a considerable challenge due to heavy reliance on fossil fuels. In fact, transport in the Republic of Ireland in 2009 accounted for 29% of non-emissions trading scheme greenhouse gas emissions, 32% of energy-related greenhouse gas emissions, 21% of total greenhouse gas emissions and approximately 50% of energy-related non-emission trading scheme greenhouse gas emissions. In this paper the effect of electric vehicle charging on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is analysed. The energy consumed, greenhouse gas emissions generated and changes to the wholesale price of electricity under peak and off-peak charging scenarios are quantified and discussed. Results from the study show that off-peak charging is more beneficial than peak charging.
Resumo:
We study the residential demand for electricity and gas, working with nationwide household-level data that cover recent years, namely 1997-2007. Our dataset is a mixed panel/multi-year cross-sections of dwellings/households in the 50 largest metropolitan areas in the United States as of 2008. We estimate static and dynamic models of electricity and gas demand. We find strong household response to energy prices, both in the short and long term. From the static models, we get estimates of the own price elasticity of electricity demand in the -0.860 to -0.667 range, while the own price elasticity of gas demand is -0.693 to -0.566. These results are robust to a variety of checks. Contrary to earlier literature (Metcalf and Hassett, 1999; Reiss and White, 2005), we find no evidence of significantly different elasticities across households with electric and gas heat. The price elasticity of electricity demand declines with income, but the magnitude of this effect is small. These results are in sharp contrast to much of the literature on residential energy consumption in the United States, and with the figures used in current government agency practice. Our results suggest that there might be greater potential for policies which affect energy price than may have been previously appreciated. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we present an empirical analysis of the residential demand for electricity using annual aggregate data at the state level for 48 US states from 1995 to 2007. Earlier literature has examined residential energy consumption at the state level using annual or monthly data, focusing on the variation in price elasticities of demand across states or regions, but has failed to recognize or address two major issues. The first is that, when fitting dynamic panel models, the lagged consumption term in the right-hand side of the demand equation is endogenous. This has resulted in potentially inconsistent estimates of the long-run price elasticity of demand. The second is that energy price is likely mismeasured.
Resumo:
The rapid increase in electricity demand in Chile means a choice must be made between major investments in renewable or non-renewable sources for additional production. Current projects to develop large dams for hydropower in Chilean Patagonia impose an environmental price by damaging the natural environment. On the other hand, the increased use of fossil fuels entails an environmental price in terms of air pollution and greenhouse gas emissions contributing to climate change. This paper studies the debate on future electricity supply in Chile by investigating the preferences of households for a variety of different sources of electricity generation such as fossil fuels, large hydropower in Chilean Patagonia and other renewable energy sources. Using Double Bounded Dichotomous Choice Contingent Valuation, a novel advanced disclosure method and internal consistency test are used to elicit the willingness to pay for less environmentally damaging sources. Policy results suggest a strong preference for renewable energy sources with higher environmental prices imposed by consumers on electricity generated from fossil fuels than from large dams in Chilean Patagonia. Policy results further suggest the possibility of introducing incentives for renewable energy developments that would be supported by consumers through green tariffs or environmental premiums. Methodological findings suggest that advanced disclosure learning overcomes the problem of internal inconsistency in SB-DB estimates.
Resumo:
Using a unique set of data and exploiting a large-scale natural experiment, we estimate the effect of real-time usage information on residential electricity consumption in Northern Ireland. Starting in April 2002, the utility replaced prepayment meters with advanced meters that allow the consumer to track usage in real-time. We rely on this event, account for the endogeneity of price and payment plan with consumption through a plan selection correction term, and find that the provision of information is associated with a decline in electricity consumption of 11-17%. We find that the reduction is robust to different specifications, selection-bias correction methods and subsamples of the original data. The advanced metering program delivers reasonably cost-effective reductions in carbon dioxide emissions, even under the most conservative usage reduction scenarios.
Resumo:
The Irish government set a target in 2008 that 10% of all vehicles in the transport fleet be powered by electricity by 2020. Similar electric vehicle targets have been introduced in other countries. In this study the effects of 213,561 electric vehicles on the operation of the single wholesale electricity market for the Republic of Ireland and Northern Ireland is investigated. A model of Ireland’s electricity market in 2020 is developed using the power systems market model called PLEXOS for power systems. The amount of CO2 emissions associated with charging the EVs and the impacts with respect to Ireland’s target for renewable energy in transport is also quantified. A single generation portfolio and two different charging scenarios, arising from a peak and off-peak charging profile are considered. Results from the study confirm that offpeak charging is more beneficial than peak charging and that charging EVs will contribute 1.45% energy supply to the 10% renewable energy in transport target. The net CO2 reductions are 147 and 210 kt CO2 respectively.
Resumo:
Wind energy has been identified as key to the European Union’s 2050 low carbon economy. However, as wind is a variable resource and stochastic by nature, it is difficult to plan and schedule the power system under varying wind power generation. This paper investigates the impacts of offshore wind power forecast error on the operation and management of a pool-based electricity market in 2050. The impact of the magnitude and variance of the offshore wind power forecast error on system generation costs, emission costs, dispatch-down of wind, number of start-ups and system marginal price is analysed. The main findings of this research are that the magnitude of the offshore wind power forecast error has the largest impact on system generation costs and dispatch-down of wind, but the variance of the offshore wind power forecast error has the biggest impact on emissions costs and system marginal price. Overall offshore wind power forecast error variance results in a system marginal price increase of 9.6% in 2050.
Resumo:
Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio.
Resumo:
This paper investigates the impacts of offshore wind power forecast error on the operation and management of a pool-based electricity market in 2050. The impact from offshore wind power forecast errors of up to 2000 MW on system generation costs, emission costs, dispatch-down of wind, number of start-ups and system marginal price are analysed. The main findings of this research are an increase in system marginal prices of approximately 1% for every percentage point rise in the offshore wind power forecast error regardless of the average forecast error sign. If offshore wind power generates less than forecasted (−13%) generation costs and system marginal prices increases by 10%. However, if offshore wind power generates more than forecasted (4%) the generation costs decrease yet the system marginal prices increase by 3%. The dispatch down of large quantities of wind power highlights the need for flexible interconnector capacity. From a system operator's perspective it is more beneficial when scheduling wind ahead of the trading period to forecast less wind than will be generated.
Resumo:
The European Union has set a target for 10% renewable energy in transport by 2020 to be met using biofuels and electric vehicles. In the case of biofuels, the biofuel must achieve greenhouse gas savings of 35% relative to the fossil fuel replaced. For biofuels, greenhouse gas savings can be calculated using life cycle analysis or the European Union default values. In contrast, all electricity used in transport is considered to be the same, regardless of the source or the type of electric vehicle. However, the choice of the electric vehicle and electricity source will have a major impact on the greenhouse gas saving. In this paper the initial findings of a well-to-wheel analysis of electric vehicle deployment in Northern Ireland are presented. The key finding indicates that electric vehicles require least amount of energy per mile on a well-to-wheel basis, consume the fewest resources, even accommodating inefficient fuel production, in comparison to standard internal combustion engine and hybrid vehicles.
Resumo:
Currently wind power is dominated by onshore wind farms in the British Isles, but both the United Kingdom and the Republic of Ireland have high renewable energy targets, expected to come mostly from wind power. However, as the demand for wind power grows to ensure security of energy supply, as a potentially cheaper alternative to fossil fuels and to meet greenhouse gas emissions reduction targets offshore wind power will grow rapidly as the availability of suitable onshore sites decrease. However, wind is variable and stochastic by nature and thus difficult to schedule. In order to plan for these uncertainties market operators use wind forecasting tools, reserve plant and ancillary service agreements. Onshore wind power forecasting techniques have improved dramatically and continue to advance, but offshore wind power forecasting is more difficult due to limited datasets and knowledge. So as the amount of offshore wind power increases in the British Isles robust forecasting and planning techniques are even more critical. This paper presents a methodology to investigate the impacts of better offshore wind forecasting on the operation and management of the single wholesale electricity market in the Republic of Ireland and Northern Ireland using PLEXOS for Power Systems. © 2013 IEEE.
Resumo:
The efficiency of generation plants is an important measure for evaluating the operating performance. The objective of this paper is to evaluate electricity power generation by conducting an All-Island-Generator-Efficiency-Study (AIGES) for the Republic of Ireland and Northern Ireland by utilising a Data Envelopment Analysis (DEA) approach. An operational performance efficiency index is defined and pursued for the year 2008. The economic activities of electricity generation units/plants examined in this paper are characterized by numerous input and output indicators. Constant returns to scale (CRS) and variable returns to scale (VRS) type DEA models are employed in the analysis. Also a slacks based analysis indicates the level of inefficiency for each variable examined. The findings from this study provide a general ranking and evaluation but also facilitate various interesting efficiency comparisons between generators by fuel type.