940 resultados para Electric power systems -- Quality control
Resumo:
This research employs econometric analysis on a cross section of American electricity companies in order to study the cost implications associated with unbundling the operations of integrated companies into vertically and/or horizontally separated companies. Focusing on the representative sample average firm, we find that complete horizontal and vertical disintegration resulting in the creation of separate nuclear, conventional, and hydro electric generation companies as well as a separate firm distributing power to final consumers, results in a statistically significant 13.5 percent increase in costs. Maintaining a horizontally integrated generator producing nuclear, conventional, and hydro electric generation while imposing vertical separation by creating a stand alone distribution company, results in a lower but still substantial and statistically significant cost penalty amounting to an 8.1 % increase in costs relative to a fully integrated structure. As these results imply that a vertically separated but horizontally integrated generation firm would need to reduce the costs of generation by 11% just to recoup the cost increases associated with vertical separation, even the costs associated with just vertical unbundling are quite substantial. Our paper is also the first academic paper we are aware of that systematically considers the impact of generation mix on vertical, horizontal, and overall scope economies. As a result, we are able to demonstrate that the estimated cost of unbundling in the electricity sector is substantially influenced by generation mix. Thus, for example, we find evidence of strong vertical integration economies between nuclear and conventional generation, but little evidence for vertical integration benefits between hydro generation and the distribution of power. In contrast, we find strong evidence suggesting the presence of substantial horizontal integration economies associated with the joint production of hydro generation with nuclear and/or conventional fossil fuel generation. These results are significant because they indicate that the cost of unbundling the electricity sector will differ substantially in different systems, meaning that a blanket regulatory policy with regard to the appropriateness of vertical and horizontal unbundling is likely to be inappropriate.
Resumo:
Every year production volume of castings grows, especially grows production volume of non-ferrous metals, thanks to aluminium. As a result, requirements to castings quality also increase. Foundry men from all over the world put all their efforts to manage the problem of casting defects. In this article the authors present an approach based on the use of cognitive models that help to visualize inner cause-and-effect relations leading to casting defects in the foundry process. The cognitive models mentioned comprise a diverse network of factors and their relations, which together thoroughly describe all the details of the foundry process and their influence on the appearance of castings’ defects and other aspects.. Moreover, the article contains an example of a simple die casting model and results of simulation. Implementation of the proposed method will help foundry men reveal the mechanism and the main reasons of casting defects formation.
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system's dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
Resumo:
Distributed Generation (DG) from alternate sources and smart grid technologies represent good solutions for the increase in energy demands. Employment of these DG assets requires solutions for the new technical challenges that are accompanied by the integration and interconnection into operational power systems. A DG infrastructure comprised of alternate energy sources in addition to conventional sources, is developed as a test bed. The test bed is operated by synchronizing, wind, photovoltaic, fuel cell, micro generator and energy storage assets, in addition to standard AC generators. Connectivity of these DG assets is tested for viability and for their operational characteristics. The control and communication layers for dynamic operations are developed to improve the connectivity of alternates to the power system. A real time application for the operation of alternate sources in microgrids is developed. Multi agent approach is utilized to improve stability and sequences of actions for black start are implemented. Experiments for control and stability issues related to dynamic operation under load conditions have been conducted and verified.
Resumo:
The construction industry requires quality control and regulation of its contingent,unpredictable environment. However, taking too much control from workers candisempower and demotivate. In the 1970s Deci and Ryan developed selfdeterminationtheory which states that in order to be intrinsically motivated, threecomponents are necessary - competence, autonomy and relatedness. This study aimsto examine the way in which the three ‘nutriments’ for intrinsic motivation may beundermined by heavy-handed quality control. A critical literature review analysesconstruction, psychological and management research regarding the control andmotivation of workers, using self-determination theory as a framework. Initialfindings show that quality management systems do not always work as designed.Workers perceive that unnecessary, wasteful and tedious counter checking of theirwork implies that they are not fully trusted by management to work without oversight.Control of workers and pressure for continual improvement may lead to resistanceand deception. Controlling mechanisms can break the link between performance andsatisfaction, reducing motivation and paradoxically reducing the likelihood of thequality they intend to promote. This study will lead to a greater understanding ofcontrol and motivation, facilitating further research into improvements in theapplication of quality control to maintain employee motivation.
Resumo:
Mammography equipment must be evaluated to ensure that images will be of acceptable diagnostic quality with lowest radiation dose. Quality Assurance (QA) aims to provide systematic and constant improvement through a feedback mechanism to address the technical, clinical and training aspects. Quality Control (QC), in relation to mammography equipment, comprises a series of tests to determine equipment performance characteristics. The introduction of digital technologies promoted changes in QC tests and protocols and there are some tests that are specific for each manufacturer. Within each country specifi c QC tests should be compliant with regulatory requirements and guidance. Ideally, one mammography practitioner should take overarching responsibility for QC within a service, with all practitioners having responsibility for actual QC testing. All QC results must be documented to facilitate troubleshooting, internal audit and external assessment. Generally speaking, the practitioner’s role includes performing, interpreting and recording the QC tests as well as reporting any out of action limits to their service lead. They must undertake additional continuous professional development to maintain their QC competencies. They are usually supported by technicians and medical physicists; in some countries the latter are mandatory. Technicians and/or medical physicists often perform many of the tests indicated within this chapter. It is important to recognise that this chapter is an attempt to encompass the main tests performed within European countries. Specific tests related to the service that you work within must be familiarised with and adhered too.
Resumo:
With the construction of operational oceanography systems, the need for real-time has become more and more important. A lot of work had been done in the past, within National Data Centres (NODC) and International Oceanographic Data and Information Exchange (IODE) to standardise delayed mode quality control procedures. Concerning such quality control procedures applicable in real-time (within hours to a maximum of a week from acquisition), which means automatically, some recommendations were set up for physical parameters but mainly within projects without consolidation with other initiatives. During the past ten years the EuroGOOS community has been working on such procedures within international programs such as Argo, OceanSites or GOSUD, or within EC projects such as Mersea, MFSTEP, FerryBox, ECOOP, and MyOcean. In collaboration with the FP7 SeaDataNet project that is standardizing the delayed mode quality control procedures in NODCs, and MyOcean GMES FP7 project that is standardizing near real time quality control procedures for operational oceanography purposes, the DATA-MEQ working group decided to put together this document to summarize the recommendations for near real-time QC procedures that they judged mature enough to be advertised and recommended to EuroGOOS.
Resumo:
The insertion of distributed generation units in the electric power systems have contributed to the popularization of microgrid concepts. With the microgrids, several potential benefits can be achieved in regard to power quality and supply reliability. However, several technical challenges related to the control and operation of microgrids, which are associated with high insertion of generation systems based on static converters, must be overcame. Among the opportunities in the context of microgrids, there is the islanded operation of microgrids temporarily disconnected from the electric power systems and also the autonomous operation of geographically isolated microgrids. The frequency in large power systems is traditionally controlled by the generation units based on traditional synchronous generator. The insertion of distributed generation units based on static power converters may bring difficulties to the frequency control in microgrids, due to the reduction of the equivalent inertia of conventional synchronous generators present in islanded and isolated microgrids. In this context, it becomes necessary the proposition of new operational and control strategies for microgrids control, taking into account the presence of distributed generation units based on full-rated converter. This paper proposes an operational and control strategy for the islanded operation of a winddiesel microgrid with high insertion level of wind generation. The microgrid adopted in this study comprises of a wind energy conversion system with synchronous generator based on full rated converter, a diesel generator (DIG) and a dump load. Due to the high insertion level of wind generation, the wind unit operates in Vf mode and the diesel generator operates in PQ mode. The diesel generator and the dump load are used to regulate the DC-link voltage of the wind generation unit. The proposed control allows the islanded operation of the microgrid only with wind generation, wind-only mode (WO), and with wind-diesel generation, wind-diesel mode (WD). For the wind-only mode, with 100% of penetration level of wind generation, it is proposed a DC-link voltage control loop based on the use of a DC dump load. For the winddiesel mode, it is proposed a DC-link voltage control loop added to the diesel generator, which is connected to the AC side of the microgrid, in coordinated action with the dump load. The proposed operational and control strategy does not require the use of batteries and aims to maximize the energy production from wind generation, ensuring the uninterrupted operation of the microgrid. The results have showed that the operational and control strategy allowed the stable operation of the islanded microgrid and that the DC-link voltage control loop added to the diesel generator and the dump load proved to be effective during the typical variations of wind speed and load.
Resumo:
This study addresses the effects of gamma irradiation (1, 5 and 8 kGy) on color, organic acids, total phenolics, total flavonoids, and antioxidant activity of dwarf mallow (Malva neglecta Wallr.). Organic acids were analyzed by ultra fast liquid chromatography (UFLC) coupled to a photodiode array (PDA) detector. Total phenolics and flavonoids were measured by the Folin-Ciocalteu and aluminium chloride colorimetric methods, respectively. The antioxidant activity was evaluated based on the DPPH(•) scavenging activity, reducing power, β-carotene bleaching inhibition and thiobarbituric acid reactive substances (TBARS) formation inhibition. Analyses were performed in the non-irradiated and irradiated plant material, as well as in decoctions obtained from the same samples. The total amounts of organic acids and phenolics recorded in decocted extracts were always higher than those found in the plant material or hydromethanolic extracts, respectively. The DPPH(•) scavenging activity and reducing power were also higher in decocted extracts. The assayed irradiation doses affected differently the organic acids profile. The levels of total phenolics and flavonoids were lower in the hydromethanolic extracts prepared from samples irradiated at 1 kGy (dose that induced color changes) and in decocted extracts prepared from those irradiated at 8 kGy. The last samples also showed a lower antioxidant activity. In turn, irradiation at 5 kGy favored the amounts of total phenolics and flavonoids. Overall, this study contributes to the understanding of the effects of irradiation in indicators of dwarf mallow quality, and highlighted the decoctions for its antioxidant properties.
Resumo:
Transportation system resilience has been the subject of several recent studies. To assess the resilience of a transportation network, however, it is essential to model its interactions with and reliance on other lifelines. In this work, a bi-level, mixed-integer, stochastic program is presented for quantifying the resilience of a coupled traffic-power network under a host of potential natural or anthropogenic hazard-impact scenarios. A two-layer network representation is employed that includes details of both systems. Interdependencies between the urban traffic and electric power distribution systems are captured through linking variables and logical constraints. The modeling approach was applied on a case study developed on a portion of the signalized traffic-power distribution system in southern Minneapolis. The results of the case study show the importance of explicitly considering interdependencies between critical infrastructures in transportation resilience estimation. The results also provide insights on lifeline performance from an alternative power perspective.
Resumo:
Harmonic distortion on voltages and currents increases with the increased penetration of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators (WGs), which are source of harmonic currents, have some common harmonic profiles with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs on harmonic distortion. This work studies the impact of PEVs on harmonic distortions and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced distribution system model is developed in OpenDSS, where PEVs and WGs are represented by harmonic current loads and sources respectively. The developed model is first used to solve harmonic power flow on IEEE 34-bus distribution system with low, moderate, and high penetration of PEVs, and its impact on current/voltage Total Harmonic Distortions (THDs) is studied. This study shows that the voltage and current THDs could be increased upto 9.5% and 50% respectively, in case of distribution systems with high PEV penetration and these THD values are significantly larger than the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at different locations in the 34-bus distribution system to demonstrate reduction in the current/voltage THDs. In this work, a framework is also developed to find optimal size of WGs to reduce THDs below prescribed operational limits in distribution circuits with PEV loads. The optimization framework is implemented in MATLAB using Genetic Algorithm, which is interfaced with the harmonic power flow model developed in OpenDSS. The developed framework is used to find optimal size of WGs on the 34-bus distribution system with low, moderate, and high penetration of PEVs, with an objective to reduce voltage/current THD deviations throughout the distribution circuits. With the optimal size of WGs in distribution systems with PEV loads, the current and voltage THDs are reduced below 5% and 7% respectively, which are within the limits prescribed by IEEE.
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
Resumo:
Background: The present work aims at the application of the decision theory to radiological image quality control ( QC) in diagnostic routine. The main problem addressed in the framework of decision theory is to accept or reject a film lot of a radiology service. The probability of each decision of a determined set of variables was obtained from the selected films. Methods: Based on a radiology service routine a decision probability function was determined for each considered group of combination characteristics. These characteristics were related to the film quality control. These parameters were also framed in a set of 8 possibilities, resulting in 256 possible decision rules. In order to determine a general utility application function to access the decision risk, we have used a simple unique parameter called r. The payoffs chosen were: diagnostic's result (correct/incorrect), cost (high/low), and patient satisfaction (yes/no) resulting in eight possible combinations. Results: Depending on the value of r, more or less risk will occur related to the decision-making. The utility function was evaluated in order to determine the probability of a decision. The decision was made with patients or administrators' opinions from a radiology service center. Conclusion: The model is a formal quantitative approach to make a decision related to the medical imaging quality, providing an instrument to discriminate what is really necessary to accept or reject a film or a film lot. The method presented herein can help to access the risk level of an incorrect radiological diagnosis decision.
Resumo:
A heuristic algorithm that employs fuzzy logic is proposed to the power system transmission expansion planning problem. The algorithm is based on the divide to conquer strategy, which is controlled by the fuzzy system. The algorithm provides high quality solutions with the use of fuzzy decision making, which is based on nondeterministic criteria to guide the search. The fuzzy system provides a self-adjusting mechanism that eliminates the manual adjustment of parameters to each system being solved. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper presents studies of cases in power systems by Sensitivity Analysis (SA) oriented by Optimal Power Flow (OPF) problems in different operation scenarios. The studies of cases start from a known optimal solution obtained by OPF. This optimal solution is called base case, and from this solution new operation points may be evaluated by SA when perturbations occur in the system. The SA is based on Fiacco`s Theorem and has the advantage of not be an iterative process. In order to show the good performance of the proposed technique tests were carried out on the IEEE 14, 118 and 300 buses systems. (C) 2010 Elsevier Ltd. All rights reserved.