933 resultados para Electric grids
Resumo:
With the use of the quartz fiber spring balance, sorptions and desorptions of water on silica gel at 30°C were studied and the permanent and reproducible hysteresis loop was obtained. At different points on the desorption curve forming the loop, the gel was subjected to high tension glow electric discharge. As a result of the electric discharge, the gel at any point on the desorption curve shifts to a corresponding point on the sorption curve. This is due to the release from the cavities of gel of the entrapped water held in a metastable state. The electric discharge has no effect on the gel at different points on portions of the desorption curve which coincide with the sorption curve and also on the sorption curve itself, indicating the absence of entrapped water in the gel in these regions. The results afford direct experimental evidence of the reality of the cavity theory of sorption-desorption hysteresis.
Resumo:
For hybrid electric vehicles the batteries and the drive dc-link may be at different voltages. The batteries are at low voltage to obtain higher volumetric efficiencies and the dc-link is at higher voltage to have higher efficiency on the motor side. Therefore a power interface between the batteries and the drive's dc-link is essential. This power interface should handle power flow from battery to motor, motor to battery, external genset to battery and grid to battery. This paper proposes a multi power port topology which is capable of handling multiple power sources and still maintains simplicity and features like obtaining any gain, wide load variations, lower output current ripple and capability of parallel battery energy due to the modular structure. The development and testing of a bi-directional fly-back DC-DC converter for hybrid electric vehicle is described in this paper. Simple hysteresis voltage control is used for DC link voltage regulation. The experimental results are presented to show the working of the proposed converter.
Resumo:
An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs2, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A novel method of detecting the charge-carrying species in inorganic decomposable salts is described. In ammonium perchlorate it is observed that the charge-carrying species at temperatures 150 and 230°C are oppositely charged; i.e., they are negatively charged (ClO−4 ions) at 230°C and positively charged (H+ or NH+4) at 150°C.
Resumo:
A novel method of detecting the charge-carrying species in inorganic decomposable salts is described. In ammonium perchlorate it is observed that the charge-carrying species at temperatures 150 and 230°C are oppositely charged; i.e., they are negatively charged (ClO−4 ions) at 230°C and positively charged (H+ or NH+4) at 150°C.
Resumo:
We investigated the rare-earth transition-metal oxide series, Ln(2)CuTiO(6) (Ln = Y, Dy, Ho, Er, and Yb), crystallizing in the hexagonal structure with noncentrosymmetric P6(3)cm space group for possible occurrences of multiferroic properties. Our results show that while these compounds, except Ln = Y, exhibit a low-temperature antiferromagnetic transition due to the ordering of the rare-earth moments, the expected ferroelectric transition is frustrated by the large size difference between Cu and Ti at the B site. Interestingly, this leads these compounds to attain a rare and unique combination of desirable paraelectric properties with high dielectric constants, low losses, and weak temperature and frequency dependencies. First-principles calculations establish these exceptional properties result from a combination of two effects. A significant difference in the MO5 polyhedral sizes for M = Cu and M = Ti suppress the expected cooperative tilt pattern of these polyhedra, required for the ferroelectric transition, leading to relatively large values of the dielectric constant for every compound investigated in this series. Additionally, it is shown that the majority contribution to the dielectric constant arises from intermediate-frequency polar vibrational modes, making it relatively stable against any temperature variation. Changes in the temperature stability of the dielectric constant among different members of this series are shown to arise from changes in relative contributions from soft polar modes.
Resumo:
This paper deals with the two-dimensional electric field modelling and electric field stress calculations of different types of composite insulators used in high voltage distribution and transmission systems. The computer simulations are carried out by using a commercially available software package. The potential and electric filed results obtained for the actual insulator profiles for three types of composite/polymeric insulators are discussed and presented.
Resumo:
Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Accurate numerical solutions to the problems in fluid-structure (aeroelasticity) interaction are becoming increasingly important in recent years. The methods based on FCD (Fixed Computational Domain) and ALE (Alternate Lagrangian Eulerian) to solve such problems suffer from numerical instability and loss of accuracy. They are not general and can not be extended to the flowsolvers on unstructured meshes. Also, global upwind schemes can not be used in ALE formulation thus leads to the development of flow solvers on moving grids. The KFVS method has been shown to be easily amenable on moving grids required in unsteady aerodynamics. The ability of KFMG (Kinetic Flux vector splitting on Moving Grid) Euler solver in capturing shocks, expansion waves with small and very large pressure ratios and contact discontinuities has been demonstrated.
Resumo:
We report here an easily reversible set-reset process in a new Ge15Te83Si2 glass that could be a promising candidate for phase change random access memory applications. The I-V characteristics of the studied sample show a comparatively low threshold electric field (E-th) of 7.3 kV/cm. Distinct differences in the type of switching behavior are achieved by means of controlling the on state current. It enables the observation of a threshold type for less than 0.7 mA beyond memory type (set) switching. The set and reset processes have been achieved with a similar magnitude of 1 mA, and with a triangular current pulse for the set process and a short duration rectangular pulse of 10 msec width for the reset operation. Further, a self-resetting effect is seen in this material upon excitation with a saw-tooth/square pulse, and their response of leading and trailing edges are discussed. About 6.5 x 10(4) set-reset cycles have been undertaken without any damage to the device. (C) 2011 American Institute of Physics. doi: 10.1063/1.3574659]
Resumo:
Diamond like carbon films deposited by RF magnetron sputter deposition technique contain both SP2 and SP3 hybridized carbons. These films are structurally disordered and inhomogeneous. By the application of electric field across the film, these films are transformed to a more orderly structured diamond like carbon, bringing homogenity in the film. This transformation has resulted in the increase of the reflectivity of the metal(Aluminum), which is used as one of the electrodes for applying the electric field, by 5 times.
Resumo:
The mechanism of reduction of iron and chromium oxide from synthetic electric are furnace stainless steelmaking slags has been studied. The activation energy for reduction of FeO depends on the FeO content of the slag and the nature of the product formed. The rate of reduction of both FeO and Cr2O3 is controlled by diffusion of ions in the slag phase. The reduction of Cr2O3 primarily takes place at the slag/Fe-C droplets interface. IS/1352b. (C) 1998 The Institute of Materials.