990 resultados para Electric density profile


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypolipidemic effects of several medicinal plants have already been demonstrated, but many plants commonly used to treat diseases still need to be studied. Peppermint (Mentha piperita) is widely consumed by the population for different purposes, but not for the treatment of dyslipidemias. The objective of this study was to examine the effects of this plant on human biochemical and anthropometric profiles and blood pressure, based on the administration of peppermint juice twice daily for 30 days. Blood samples were collected before and after the treatment in order to determine the glycemic and lipid profiles, and the Body Mass Index (BMI) analysis was performed. Results indicated that 41.5% of the subjects showed a reduction in glycemia, 66.9% in total cholesterol levels, 58.5% in triacylglycerides, 52.3% in LDL-c (low-density lipoproteins) indices, 70% in GOT (glutamic-oxaloacetic transaminase) levels, 74.5% in GPT (glutamic-pyruvic transaminase) levels, and that 52% presented an increase in HDL-c (high-density lipoprotein cholesterol) indices. Also, 52.5% showed a decrease in blood pressure and 48.7% in BMI. The use of peppermint by humans can be considered beneficial in the prevention and treatment of risk factors of chronic degenerative diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects. of moisture, cation concentration, dens ity , temper~ t ure and grai n si ze on the electrical resistivity of so il s are examined using laboratory prepared soils. An i nexpen si ve method for preparing soils of different compositions was developed by mixing various size fractions i n the laboratory. Moisture and cation c oncentration are related to soil resistivity by powe r functions, whereas soil resistiv ity and temperature, density, Yo gravel, sand , sil t, and clay are related by exponential functions . A total of 1066 cases (8528 data) from all the experiments were used in a step-wise multiple linear r egression to determine the effect of each variable on soil resistivity. Six variables out of the eight variables studied account for 92.57/. of the total variance in so il resistivity with a correlation coefficient of 0.96. The other two variables (silt and gravel) did not increase the · variance. Moisture content was found to be - the most important Yo clay. variable- affecting s oil res istivi ty followed by These two variables account for 90.81Yo of the total variance in soil resistivity with a correlation ~oefficient ·.of 0 . 95. Based on these results an equation to ' ~~ed{ ct soil r esist ivi ty using moisture and Yo clay is developed . To t est the predicted equation, resistivity measurements were made on natural soils both in s i tu a nd i n the laboratory. The data show that field and laboratory measurements are comparable. The predicted regression line c losely coinciqes with resistivity data from area A and area B soils ~clayey and silty~clayey sands). Resistivity data and the predicted regression line in the case of c layey soils (clays> 40%) do not coincide, especially a t l ess than 15% moisture. The regression equation overestimates the resistivity of so i l s from area C and underestimates for area D soils. Laboratory prepared high clay soils give similar trends. The deviations are probably caused by heterogeneous distribution of mo i sture and difference in the type o f cl ays present in these soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La réalisation de dispositifs à des dimensions sous-micrométriques et nanométriques demande une maîtrise parfaite des procédés de fabrication, notamment ceux de gravure. La réalisation des ces dispositifs est complexe et les exigences en termes de qualité et de géométrie des profils de gravure imposent de choisir les conditions opératoires les mieux adaptées. Les simulations de l'évolution spatio-temporelle des profils de gravure que nous proposons dans cette thèse s'inscrivent parfaitement dans ce contexte. Le simulateur que nous avons réalisé offre la possibilité de mieux comprendre les processus qui entrent en jeu lors de la gravure par plasma de profils dans divers matériaux. Il permet de tester l'influence des paramètres du plasma sur la forme du profil et donc de déterminer les conditions opératoires optimales. La mise au point de ce simulateur s'appuie sur les concepts fondamentaux qui gouvernent la gravure par plasma. À partir de l'état des lieux des différentes approches numériques pouvant être utilisées, nous avons élaboré un algorithme stable et adaptable permettant de mettre en évidence l'importance de certains paramètres clés pour la réalisation de profils de gravure par un plasma à haute densité et à basse pression. Les capacités de cet algorithme ont été testées en étudiant d'une part la pulvérisation de Si dans un plasma d'argon et d'autre part, la gravure chimique assistée par les ions de SiO2/Si dans un plasma de chlore. Grâce aux comparaisons entre profils simulés et expérimentaux, nous avons montré l'importance du choix de certains paramètres, comme la nature du gaz utilisé et la pression du plasma, la forme initiale du masque, la sélectivité masque/matériau, le rapport de flux neutre/ion, etc. Nous avons aussi lié ces paramètres à la formation de défauts dans les profils, par exemple celle de facettes sur le masque, de parois concaves, et de micro-tranchées. Enfin, nous avons montré que le phénomène de redépôt des atomes pulvérisés entre en compétition avec la charge électrique de surface pour expliquer la formation de profils en V dans le Pt pulvérisé par un plasma d'argon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within current-density-functional theory, we have studied a quantum dot made of 210 electrons confined in a disk geometry. The ground state of this large dot exhibits some features as a function of the magnetic field (Beta) that can be attributed in a clear way to the formation of compressible and incompressible states of the system. The orbital and spin angular momenta, the total energy, ionization and electron chemical potentials of the ground state, as well as the frequencies of far-infrared edge modes are calculated as a function of Beta, and compared with available experimental and theoretical results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The longitudinal dipole response of a quantum dot has been calculated in the far-infrared regime using local-spin-density-functional theory. We have studied the coupling between the collective spin and density modes as a function of the magnetic field. We have found that the spin dipole mode and single-particle excitations have a sizable overlap, and that the magnetoplasmon modes can be excited by the dipole spin operator if the dot is spin polarized. The frequency of the dipole spin edge mode presents an oscillation which is clearly filling factor (v) related. We have found that the spin dipole mode is especially soft for even-n values. Results for selected numbers of electrons and confining potentials are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design and analysis of a 400-step hybrid stepper motor for spacecraft applications. The design of the hybrid stepper motor for achieving a specific performance requires the choice of appropriate tooth geometry. In this paper, a detailed account of the results of two-dimensional finite-element (FE) analysis conducted with different tooth shapes such as square and trapezoidal, is presented. The use of % more corresponding increase in detent torque and distorted static torque profile. For the requirements of maximum torque density, less-detent torque, and better positional accuracy and smooth static torque profile, different pitch slotting with equal tooth width has to be provided. From the various FE models subjected to analysis trapezoidal teeth configuration with unequal tooth pitch on the stator and rotor is found to be the best configuration and is selected for fabrication. The designed motor is fabricated and the experimental results is compared with the FE results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La exposición a altas temperaturas en ambientes laborales conlleva a cambios fisiológicos que se manifiestan como mecanismos de compensación a la alteración del equilibrio homeostático corporal. El propósito del presente estudio fue determinar los cambios y el comportamiento de variables fisiológicas a través de frecuencia cardiaca, densidad urinaria, temperatura corporal y tasa de sudoración, en dos escenarios con condiciones térmicas ambientales diferentes definidas por la exposición (grupo expuesto y no expuesto). Adicional, en dos áreas de trabajo diferentes correspondientes al proceso de fundición del acero, una de ellas, Horno electrico donde se hace la fusión de la chatarra y demás materias primas, obteniendo así el acero liquido, el cual se vuelca en el Horno Cuchara y en este, libre ya de escoria se realiza el afino y ajuste definitivo de la composición química del acero. Objetivos: Identificar la relación de las respuestas fisiológicas a carga física y térmica, comparar las respuestas funcionales registradas en el grupo expuestos y no expuestos y contribuir a la introducción de nuevos indicadores para evaluar carga e intensidad de trabajo con fines de normalización ergonómica. Método: Investigación experimental en una muestra de 30 trabajadores evaluados en dos condiciones ambientales diferentes. La temperatura oral se registró al inicio de la jornada y con intervalos de toma de 3 horas. La frecuencia cardiaca (HR) se registró durante las 8 horas de trabajo continuas con pulsometría. Igualmente, se estimó la sudoración por pérdida de masa corporal entre el inicio y el final de la jornada laboral teniendo en cuenta ingestas y perdidas. El procesamiento estadístico se realizó con el programa SPSS v. 20.0, calculándose medidas de tendencia central y dispersión, prueba de wilconxon para las variables dependientes y correlación para identificar asociaciones. Para todos los cálculos se asumió p <0,05. Resultados: No se observaron diferencias significativas frente a la variación de la frecuencia cardiaca (media y máxima), la tasa de sudoración y la densidad urinaria. A pesar de que no hubo diferencias significativas en la variación de la temperatura corporal en horno cuchara, si se observó una diferencia significativa en el horno eléctrico Conclusión: Aunque no se encontraron diferencias estadísticamente significativas en la mayoría de las variables, es un hecho que la exposición a temperaturas elevadas extremas tiene un impacto en el comportamiento fisiológico del organismo. Futuros estudios deben considerar la posibilidad de estandarizar protocolos que permitan la exposición térmica basada en el perfil particular de cada trabajador.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vertical conduction current flows in the atmosphere as a result of the global atmospheric electric circuit. The current at the surface consists of the conduction current and a locally generated displacement current, which are often approximately equal in magnitude. A method of separating the two currents using two collectors of different geometry is investigated. The picoammeters connected to the collectors have a RC time constant of approximately 3 s, permitting the investigation of higher frequency air-earth current changes than previously achieved. The displacement current component of the air-earth current derived from the instrument agrees with calculations using simultaneous data from a co-located fast response electric field mill. The mean value of the nondisplacement current measured over 9 h was 1.76 +/- 0.002 pA m(-2). (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (∼1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10−7 S m−1 (for poorly conducting rocks) to 10−2 S m−1 (for clay or wet limestone), with a mean value of 3.2 S m−1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ∼10−14 S m−1 just above the surface to 10−7 S m−1 in the ionosphere at ∼80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ∼1 pA m−2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (∼+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ∼130 V m−1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent discovery that vitamin E (VE) regulates gene activity at the transcriptional level indicates that VE may exert part of its biological effects by mechanisms which may be independent of its well-recognised antioxidant function. The objective of this study was the identification of hepatic vitamin E-sensitive genes and examination of the effects of VE on their corresponding biological endpoints. Two groups of male rats were randomly assigned to either a VE-sufficient diet or to a control diet deficient in VE for 290 days. High-density oligonucleotide microarrays comprising over 7000 genes were used to assess the transcriptional response of the liver. Differential gene expression was monitored over a period of 9 months, at four different time-points, and rats were individually profiled. This experimental strategy identified several VE-sensitive genes, which were chronically altered by dietary VE. VE supplementation down-regulated scavenger receptor CD36, coagulation factor IX and 5-alpha-steroid reductase type 1 mRNA levels while hepatic gamma glutamyl-cysteinyl synthetase was significantly up-regulated. Measurement of the corresponding biological endpoints such as activated partial thromboplastin time, plasma dihydrotestosterone and hepatic glutathione substantiated the gene chip data which indicated that dietary VE plays an important role in a range of metabolic processes within the liver. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A description is given of the global atmospheric electric circuit operating between the Earth’s surface and the ionosphere. Attention is drawn to the huge range of horizontal and vertical spatial scales, ranging from 10−9 m to 1012 m, concerned with the many important processes at work. A similarly enormous range of time scales is involved from 10−6 s to 109 s, in the physical effects and different phenomena that need to be considered. The current flowing in the global circuit is generated by disturbed weather such as thunderstorms and electrified rain/shower clouds, mostly occurring over the Earth’s land surface. The profile of electrical conductivity up through the atmosphere, determined mainly by galactic cosmic ray ionization, is a crucial parameter of the circuit. Model simulation results on the variation of the ionospheric potential, ∼250 kV positive with respect to the Earth’s potential, following lightning discharges and sprites are summarized. Experimental results comparing global circuit variations with the neutron rate recorded at Climax, Colorado, are then discussed. Within the return (load) part of the circuit in the fair weather regions remote from the generators, charge layers exist on the upper and lower edges of extensive layer clouds; new experimental evidence for these charge layers is also reviewed. Finally, some directions for future research in the subject are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modelling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multi-spacecraft observations from Cluster we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitatively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations and use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500~V and that the majority of the potential drop was below C3. By assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous observations single- and multi-spacecraft observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical soundings of the atmospheric ion production rate have been obtained from Geiger counters integrated with conventional meteorological radiosondes. In launches made from Reading (UK) during 2013-2014, the Regener-Pfotzer ionisation maximum was at an altitude equivalent to a pressure of (63.1±2.4) hPa, or, expressed in terms of the local air density, (0.101±0.005) kgm−3. The measured ionisation profiles have been evaluated against the Usoskin-Kovaltsov model and, separately, surface neutron monitor data from Oulu. Model ionisation rates agree well with the observed cosmic ray ionisation below 20 km altitude. Above 10 km, the measured ionisation rates also correlate well with simultaneous neutron monitor data, although, consistently with previous work, measured variability at the ionisation maximum is greater than that found by the neutron monitor. However, in the lower atmosphere (below 5 km altitude), agreement between the measurements and simultaneous neutron monitor data is poor. For studies of transient lower atmosphere phenomena associated with cosmic ray ionisation, this indicates the need for in situ ionisation measurements and improved lower atmosphere parameterisations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproductive ageing is linked to the depletion of ovarian primordial follicles, which causes an irreversible change to ovarian cellular function and the capacity to reproduce. The current study aimed to profile the expression of bone morphogenetic protein receptor, (BMPR1B) in 53 IVF patients exhibiting different degrees of primordial follicle depletion. The granulosa cell receptor density was measured in 403 follicles via flow cytometry. A decline in BMPR1B density occurred at the time of dominant follicle selection and during the terminal stage of folliculogenesis in the 23-30 y good ovarian reserve patients. The 40+ y poor ovarian reserve patients experienced a reversal of this pattern. The results demonstrate an association between age-induced depletion of the ovarian reserve and BMPR1B receptor density at the two critical time points of dominant follicle selection and pre-ovulatory follicle maturation. Dysregulation of BMP receptor signalling may inhibit the normal steroidogenic differentiation required for maturation in older patients.