914 resultados para Election forecasting
Resumo:
Tämä työ luo katsauksen ajallisiin ja stokastisiin ohjelmien luotettavuus malleihin sekä tutkii muutamia malleja käytännössä. Työn teoriaosuus sisältää ohjelmien luotettavuuden kuvauksessa ja arvioinnissa käytetyt keskeiset määritelmät ja metriikan sekä varsinaiset mallien kuvaukset. Työssä esitellään kaksi ohjelmien luotettavuusryhmää. Ensimmäinen ryhmä ovat riskiin perustuvat mallit. Toinen ryhmä käsittää virheiden ”kylvöön” ja merkitsevyyteen perustuvat mallit. Työn empiirinen osa sisältää kokeiden kuvaukset ja tulokset. Kokeet suoritettiin käyttämällä kolmea ensimmäiseen ryhmään kuuluvaa mallia: Jelinski-Moranda mallia, ensimmäistä geometrista mallia sekä yksinkertaista eksponenttimallia. Kokeiden tarkoituksena oli tutkia, kuinka syötetyn datan distribuutio vaikuttaa mallien toimivuuteen sekä kuinka herkkiä mallit ovat syötetyn datan määrän muutoksille. Jelinski-Moranda malli osoittautui herkimmäksi distribuutiolle konvergaatio-ongelmien vuoksi, ensimmäinen geometrinen malli herkimmäksi datan määrän muutoksille.
Resumo:
Sähkönkulutuksen lyhyen aikavälin ennustamista on tutkittu jo pitkään. Pohjoismaisien sähkömarkkinoiden vapautuminen on vaikuttanut sähkönkulutuksen ennustamiseen. Aluksi työssä perehdyttiin aiheeseen liittyvään kirjallisuuteen. Sähkönkulutuksen käyttäytymistä tutkittiin eri aikoina. Lämpötila tilastojen käyttökelpoisuutta arvioitiin sähkönkulutusennustetta ajatellen. Kulutus ennusteet tehtiin tunneittain ja ennustejaksona käytettiin yhtä viikkoa. Työssä tutkittiin sähkönkulutuksen- ja lämpötiladatan saatavuutta ja laatua Nord Poolin markkina-alueelta. Syötettävien tietojen ominaisuudet vaikuttavat tunnittaiseen sähkönkulutuksen ennustamiseen. Sähkönkulutuksen ennustamista varten mallinnettiin kaksi lähestymistapaa. Testattavina malleina käytettiin regressiomallia ja autoregressiivistä mallia (autoregressive model, ARX). Mallien parametrit estimoitiin pienimmän neliösumman menetelmällä. Tulokset osoittavat että kulutus- ja lämpötiladata on tarkastettava jälkikäteen koska reaaliaikaisen syötetietojen laatu on huonoa. Lämpötila vaikuttaa kulutukseen talvella, mutta se voidaan jättää huomiotta kesäkaudella. Regressiomalli on vakaampi kuin ARX malli. Regressiomallin virhetermi voidaan mallintaa aikasarjamallia hyväksikäyttäen.
Resumo:
Tämä tutkimus oli osa sähköistä liiketoimintaa ja langattomia sovelluksia tutkivaa projektia ja tutkimuksen tavoitteena oli selvittää ennustamisen rooli päätöksenteko- ja suunnitteluprosessissa ja määrittää parhaiten soveltuvat ja useimmin käytetyt teknologian ennustusmenetelmät. Ennustusmenetelmiä tarkasteltiin erityisesti uuden teknologian ja pitkän aikavälin ennustamisen näkökulmasta. Tutkimus perustui teknologista ennustamista, pitkän aikavälin suunnittelua ja innovaatioprosesseja käsittelevän kirjallisuuden analysointiin. Materiaalin perusteella kuvataan teknologian ennustamista informaation hankkimisvälineenä organisaatioiden suunnitteluprosessin apuna. Työssä arvioidaan myös seuraavat teknologisen ennustamisen menetelmät: trendianalyysi-, Delfoi-, cross-impact analyysi-, morfologinen analyysi- ja skenaario analyysimenetelmä. Työ tuo esille jokaisen ennustusmenetelmä ominaispiirteet, rajoitukset ja sovellusmahdollisuudet. Käyttäen esiteltyjä menetelmiä, saadaan kerättyä hyödyllistä informaatiota tulevaisuuden näkymistä, joita sitten voidaan käyttää hyväksi organisaatioiden suunnitteluprosesseissa.
Resumo:
This special issue of Natural Hazards and Earth System Sciences (NHESS) contains eight papers presented as oral or poster contributions in the Natural Hazards NH-1.2 session on"Extreme events induced by weather and climate change: evaluation, forecasting and proactive planning", held at the European Geosciences Union (EGU) General Assembly in Vienna, Austria, on 13-18 April 2008. The aim of the session was to provide an international forum for presenting new results and for discussing innovative ideas and concepts on extreme hydro-meteorological events, including: (i) the assessment of the risk posed by the extreme events, (ii) the expected changes in the frequency and intensity of the events driven by a changing climate and by multiple human- induced causes, (iii) new modelling approaches and original forecasting methods to predict extreme events and their consequences, and (iv) strategies for hazard mitigation and risk reduction, and for a improved adaptation to extreme hydro-meteorological events ...
Resumo:
Abstract Purpose- There is a lack of studies on tourism demand forecasting that use non-linear models. The aim of this paper is to introduce consumer expectations in time-series models in order to analyse their usefulness to forecast tourism demand. Design/methodology/approach- The paper focuses on forecasting tourism demand in Catalonia for the four main visitor markets (France, the UK, Germany and Italy) combining qualitative information with quantitative models: autoregressive (AR), autoregressive integrated moving average (ARIMA), self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. The forecasting performance of the different models is evaluated for different time horizons (one, two, three, six and 12 months). Findings- Although some differences are found between the results obtained for the different countries, when comparing the forecasting accuracy of the different techniques, ARIMA and Markov switching regime models outperform the rest of the models. In all cases, forecasts of arrivals show lower root mean square errors (RMSE) than forecasts of overnight stays. It is found that models with consumer expectations do not outperform benchmark models. These results are extensive to all time horizons analysed. Research limitations/implications- This study encourages the use of qualitative information and more advanced econometric techniques in order to improve tourism demand forecasting. Originality/value- This is the first study on tourism demand focusing specifically on Catalonia. To date, there have been no studies on tourism demand forecasting that use non-linear models such as self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. This paper fills this gap and analyses forecasting performance at a regional level. Keywords Tourism, Forecasting, Consumers, Spain, Demand management Paper type Research paper
Resumo:
Language extinction as a consequence of language shifts is a widespread social phenomenon that affects several million people all over the world today. An important task for social sciences research should therefore be to gain an understanding of language shifts, especially as a way of forecasting the extinction or survival of threatened languages, i.e., determining whether or not the subordinate language will survive in communities with a dominant and a subordinate language. In general, modeling is usually a very difficult task in the social sciences, particularly when it comes to forecasting the values of variables. However, the cellular automata theory can help us overcome this traditional difficulty. The purpose of this article is to investigate language shifts in the speech behavior of individuals using the methodology of the cellular automata theory. The findings on the dynamics of social impacts in the field of social psychology and the empirical data from language surveys on the use of Catalan in Valencia allowed us to define a cellular automaton and carry out a set of simulations using that automaton. The simulation results highlighted the key factors in the progression or reversal of a language shift and the use of these factors allowed us to forecast the future of a threatened language in a bilingual community.
Resumo:
For landline telephone surveys in particular, undercoverage has been a growing problem. However, research regarding the relative contributions of socio-demographic bias and other composition effects is scarce. We propose to address this issue by analyzing an election survey which used a sample from a register-based sampling frame containing basic socio-demographic information and to which telephone numbers were subsequently matched. With respect to socio-demographic representation of the final sample, we find that difficult to match groups are also difficult to contact, while those who cooperate tend to have different characteristics. We find bias due to undercoverage to be of greater magnitude than noncontact bias, while noncooperation falls between the two. As for substantive variables, both additional efforts to match missing telephone numbers and the construction of better weights are successful in closing the gap between survey estimates of voting behavior and true values from the election results.
Resumo:
Tutkielman tavoitteena oli tarkastella innovaatioiden leviämismallien ennustetarkkuuteen vaikuttavia tekijöitä. Tutkielmassa ennustettiin logistisella mallilla matkapuhelinliittymien leviämistä kolmessa Euroopan maassa: Suomessa, Ranskassa ja Kreikassa. Teoriaosa keskittyi innovaatioiden leviämisen ennustamiseen leviämismallien avulla. Erityisesti painotettiin mallien ennustuskykyä ja niiden käytettävyyttä eri tilanteissa. Empiirisessä osassa keskityttiin ennustamiseen logistisella leviämismallilla, joka kalibroitiin eri tavoin koostetuilla aikasarjoilla. Näin tehtyjä ennusteita tarkasteltiin tiedon kokoamistasojen vaikutusten selvittämiseksi. Tutkimusasetelma oli empiirinen, mikä sisälsi logistisen leviämismallin ennustetarkkuuden tutkimista otosdatan kokoamistasoa muunnellen. Leviämismalliin syötettävä data voidaan kerätä kuukausittain ja operaattorikohtaisesti vaikuttamatta ennustetarkkuuteen. Dataan on sisällytettävä leviämiskäyrän käännöskohta, eli pitkän aikavälin huippukysyntäpiste.
Resumo:
The topic of this study is the language of the educational policies of the British Labour party in the General Election manifestos between the years 1983-2005. The twenty-year period studied has been a period of significant changes in world politics, and in British politics, especially for the Labour party. The emergence educational policy as a vote-winner of the manifestos of the nineties has been noteworthy. The aim of the thesis is two-fold: to look at the structure of the political manifesto as an example of genre writing and to analyze the content utilizing the approach of critical discourse analysis. Furthermore, the aim of this study is not to pinpoint policy positions but to look at what is the image that the Labour Party creates of itself through these manifestos. The analysis of the content is done by a method of close-reading. Based on the findings, the methodology for the analysis of the content was created. This study utilized methodological triangulation which means that the material is analyzed from several methodological aspects. The aspects used in this study are ones of lexical features (collocation, coordination, euphemisms, metaphors and naming), grammatical features (thematic roles, tense, aspect, voice and modal auxiliaries) and rhetoric (Burke, Toulmin and Perelman). From the analysis of the content a generic description is built. By looking at the lexical, grammatical and rhetorical features a clear change in language of the Labour Party can be detected. This change is foreshadowed already in the 1992 manifesto but culminates in the 1997 manifesto which would lead Labour to a landslide victory in the General Election. During this twenty-year period Labour has moved away from the old commitments and into the new sphere of “something for everybody”. The pervasiveness of promotional language and market inspired vocabulary into the sphere of manifesto writing is clear. The use of the metaphors seemed to be the tool for the creation of the image of the party represented through the manifestos. A limited generic description can be constructed from the findings based on the content and structure of the manifestos: especially more generic findings such as the use of the exclusive we, the lack of certain anatomical parts of argument structure, the use of the future tense and the present progressive aspect can shed light to the description of the genre of manifesto writing. While this study is only the beginning, it proves that the combination of looking at the lexical, grammatical and rhetorical features in the study of manifestos is a promising one.
Resumo:
Seaports play an important part in the wellbeing of a nation. Many nations are highly dependent on foreign trade and most trade is done using sea vessels. This study is part of a larger research project, where a simulation model is required in order to create further analyses on Finnish macro logistical networks. The objective of this study is to create a system dynamic simulation model, which gives an accurate forecast for the development of demand of Finnish seaports up to 2030. The emphasis on this study is to show how it is possible to create a detailed harbor demand System Dynamic model with the help of statistical methods. The used forecasting methods were ARIMA (autoregressive integrated moving average) and regression models. The created simulation model gives a forecast with confidence intervals and allows studying different scenarios. The building process was found to be a useful one and the built model can be expanded to be more detailed. Required capacity for other parts of the Finnish logistical system could easily be included in the model.
Resumo:
In the world of transport management, the term ‘anticipation’ is gradually replacing ‘reaction’. Indeed, the ability to forecast traffic evolution in a network should ideally form the basis for many traffic management strategies and multiple ITS applications. Real-time prediction capabilities are therefore becoming a concrete need for the management of networks, both for urban and interurban environments, and today’s road operator has increasingly complex and exacting requirements. Recognising temporal patterns in traffic or the manner in which sequential traffic events evolve over time have been important considerations in short-term traffic forecasting. However, little work has been conducted in the area of identifying or associating traffic pattern occurrence with prevailing traffic conditions. This paper presents a framework for detection pattern identification based on finite mixture models using the EM algorithm for parameter estimation. The computation results have been conducted taking into account the traffic data available in an urban network.
Resumo:
Most motor bodily injury (BI) claims are settled by negotiation, with fewer than 5% of cases going to court. A well-defined negotiation strategy is thus very useful for insurance companies. In this paper we assume that the monetary compensation awarded in court is the upper amount to be offered by the insurer in the negotiation process. Using a real database, a log-linear model is implemented to estimate the maximal offer. Non-spherical disturbances are detected. Correlation occurs when various claims are settled in the same judicial verdict. Group wise heteroscedasticity is due to the influence of the forensic valuation on the final compensation amount. An alternative approximation based on generalized inference theory is applied to estimate confidence intervals on variance components, since classical interval estimates may be unreliable for datasets with unbalanced structures.
Resumo:
First application of compositional data analysis techniques to Australian election data
Resumo:
This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.