835 resultados para Ecumenical movement.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sesbania mosaic virus (SeMV) is a single-stranded positive-sense RNA plant virus belonging to the genus Sobemovirus. The movement protein (MP) encoded by SeMV ORF1 showed no significant sequence similarity with MPs of other genera, but showed 32% identity with the MP of Southern bean mosaic virus within the Sobemovirus genus. With a view to understanding the mechanism of cell-to-cell movement in sobemoviruses, the SeMV MP gene was cloned, over-expressed in Escherichia coli and purified. Interaction of the recombinant MP with the native virus (NV) was investigated by ELISA and pull-down assays. It was observed that SeMV MP interacted with NV in a concentration- and pH-dependent manner. Analysis of N- and C-terminal deletion mutants of the MP showed that SeMV MP interacts with the NV through the N- terminal 49 amino acid segment. Yeast two-hybrid assays confirmed the in vitro observations, and suggested that SeMV might belong to the class of viruses that require MP and NV/coat protein for cell-to-cell movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sesbania mosaic virus (SeMV) is a single strand positive-sense RNA plant virus that belongs to the genus Sobemovirus. The mechanism of cell-to-cell movement in sobemoviruses has not been well studied. With a view to identify the viral encoded ancillary proteins of SeMV that may assist in cell-to-cell movement of the virus, all the proteins encoded by SeMV genome were cloned into yeast Matchmaker system 3 and interaction studies were performed. Two proteins namely, viral protein genome linked (VPg) and a 10-kDa protein (P10) c v gft encoded by OFR 2a, were identified as possible interacting partners in addition to the viral coat protein (CP). Further characterization of these interactions revealed that the movement protein (MP) recognizes cognate RNA through interaction with VPg, which is covalently linked to the 59 end of the RNA. Analysis of the deletion mutants delineated the domains of MP involved in the interaction with VPg and P10. This study implicates for the first time that VPg might play an important role in specific recognition of viral genome by MP in SeMV and shed light on the possible role of P10 in the viral movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2-Methylcitric acid (2-MCA) cycle is one of the well studied pathways for the utilization of propionate as a source of carbon and energy in bacteria such as Salmonella typhimurium and Escherichia coli. 2-Methylcitrate synthase (2-MCS) catalyzes the conversion of oxaloacetate and propionyl-CoA to 2-methylcitrate and CoA in the second step of 2-MCA cycle. Here, we report the X-ray crystal structure of S. typhimurium 2-MCS (StPrpC) at 2.4 A resolution and its functional characterization. StPrpC was found to utilize propionyl-CoA more efficiently than acetyl-CoA or butyryl-CoA. The polypeptide fold and the catalytic residues of StPrpC are conserved in citrate synthases (CSs) suggesting similarities in their functional mechanisms. In the triclinic P1 cell, StPrpC molecules were organized as decamers composed of five identical dimer units. In solution, StPrpC was in a dimeric form at low concentrations and was converted to larger oligomers at higher concentrations. CSs are usually dimeric proteins. In Gram-negative bacteria, a hexameric form, believed to be important for regulation of activity by NADH, is also observed. Structural comparisons with hexameric E. coil CS suggested that the key residues involved in NADH binding are not conserved in StPrpC. Structural comparison with the ligand free and bound states of CSs showed that StPrpC is in a nearly closed conformation despite the absence of bound ligands. It was found that the Tyr197 and Leu324 of StPrpC are structurally equivalent to the ligand binding residues His and Val, respectively, of CSs. These substitutions might determine the specificities for acyl-CoAs of these enzymes. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized enthalpy update scheme is presented for evaluating solid and liquid fractions during the solidification of binary alloys, taking solid movement into consideration. A fixed-grid, enthalpy-based method is developed such that the scheme accounts for equilibrium as well as for nonequilibrium solidification phenomena, along with solid phase movement. The effect of solid movement on the solidification interface shape and macrosegregation is highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bhutani N, Ray S, Murthy A. Is saccade averaging determined by visual processing or movement planning? J Neurophysiol 108: 3161-3171, 2012. First published September 26, 2012; doi:10.1152/jn.00344.2012.-Saccadic averaging that causes subjects' gaze to land between the location of two targets when faced with simultaneously or sequentially presented stimuli has been often used as a probe to investigate the nature of computations that transform sensory representations into an oculomotor plan. Since saccadic movements involve at least two processing stages-a visual stage that selects a target and a movement stage that prepares the response-saccade averaging can either occur due to interference in visual processing or movement planning. By having human subjects perform two versions of a saccadic double-step task, in which the stimuli remained the same, but different instructions were provided (REDIRECT gaze to the later-appearing target vs. FOLLOW the sequence of targets in their order of appearance), we tested two alternative hypotheses. If saccade averaging were due to visual processing alone, the pattern of saccade averaging is expected to remain the same across task conditions. However, whereas subjects produced averaged saccades between two targets in the FOLLOW condition, they produced hypometric saccades in the direction of the initial target in the REDIRECT condition, suggesting that the interaction between competing movement plans produces saccade averaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How the brain converts parallel representations of movement goals into sequential movements is not known. We tested the role of basal ganglia (BG) in the temporal control of movement sequences by a convergent approach involving inactivation of the BG by muscimol injections into the caudate nucleus of monkeys and assessing behavior of Parkinson's disease patients, performing a modified double-step saccade task. We tested a critical prediction of a class of competitive queuing models that explains serial behavior as the outcome of a selection of concurrently activated goals. In congruence with these models, we found that inactivation or impairment of the BG unmasked the parallel nature of goal representations such that a significantly greater extent of averaged saccades, curved saccades, and saccade sequence errors were observed. These results suggest that the BG perform a form of competitive queuing, holding the second movement plan in abeyance while the first movement is being executed, allowing the proper temporal control of movement sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a framework to explore and visualize the movement of cloud systems. Using techniques from computational topology and computer vision, our framework allows the user to study this movement at various scales in space and time. Such movements could have large temporal and spatial scales such as the Madden Julian Oscillation (MJO), which has a spatial scale ranging from 1000 km to 10000 km and time of oscillation of around 40 days. Embedded within these larger scale oscillations are a hierarchy of cloud clusters which could have smaller spatial and temporal scales such as the Nakazawa cloud clusters. These smaller cloud clusters, while being part of the equatorial MJO, sometimes move at speeds different from the larger scale and in a direction opposite to that of the MJO envelope. Hitherto, one could only speculate about such movements by selectively analysing data and a priori knowledge of such systems. Our framework automatically delineates such cloud clusters and does not depend on the prior experience of the user to define cloud clusters. Analysis using our framework also shows that most tropical systems such as cyclones also contain multi-scale interactions between clouds and cloud systems. We show the effectiveness of our framework to track organized cloud system during one such rainfall event which happened at Mumbai, India in July 2005 and for cyclone Aila which occurred in Bay of Bengal during May 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study an analytical model has been presented to describe the transient temperature distribution and advancement of the thermal front generated due to the reinjection of heat depleted water in a heterogeneous geothermal reservoir. One dimensional heat transport equation in porous media with advection and longitudinal heat conduction has been solved analytically using Laplace transform technique in a semi infinite medium. The heterogeneity of the porous medium is expressed by the spatial variation of the flow velocity and the longitudinal effective thermal conductivity of the medium. A simpler solution is also derived afterwards neglecting the longitudinal conduction depending on the situation where the contribution to the transient heat transport phenomenon in the porous media is negligible. Solution for a homogeneous aquifer with constant values of the rock and fluid parameters is also derived with an aim to compare the results with that of the heterogeneous one. The effect of some of the parameters involved, on the transient heat transport phenomenon is assessed by observing the variation of the results with different magnitudes of those parameters. Results prove the heterogeneity of the medium, the flow velocity and the longitudinal conductivity to have great influence and porosity to have negligible effect on the transient temperature distribution. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programming for parallel architectures that do not have a shared address space is extremely difficult due to the need for explicit communication between memories of different compute devices. A heterogeneous system with CPUs and multiple GPUs, or a distributed-memory cluster are examples of such systems. Past works that try to automate data movement for distributed-memory architectures can lead to excessive redundant communication. In this paper, we propose an automatic data movement scheme that minimizes the volume of communication between compute devices in heterogeneous and distributed-memory systems. We show that by partitioning data dependences in a particular non-trivial way, one can generate data movement code that results in the minimum volume for a vast majority of cases. The techniques are applicable to any sequence of affine loop nests and works on top of any choice of loop transformations, parallelization, and computation placement. The data movement code generated minimizes the volume of communication for a particular configuration of these. We use a combination of powerful static analyses relying on the polyhedral compiler framework and lightweight runtime routines they generate, to build a source-to-source transformation tool that automatically generates communication code. We demonstrate that the tool is scalable and leads to substantial gains in efficiency. On a heterogeneous system, the communication volume is reduced by a factor of 11X to 83X over state-of-the-art, translating into a mean execution time speedup of 1.53X. On a distributed-memory cluster, our scheme reduces the communication volume by a factor of 1.4X to 63.5X over state-of-the-art, resulting in a mean speedup of 1.55X. In addition, our scheme yields a mean speedup of 2.19X over hand-optimized UPC codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current applications of statistical thermodynamic theories for clathrate hydrates do not incorporate the translational and rotational movement of water molecules of the hydrate lattice,in a rigorous manner. Previous studies have shown that the movement of water molecules has a significant effect on the properties of clathrate hydrates. In this Article, a method is presented to incorporate the effect of water movement with as much rigor as possible. This method is then used to calculate the Langmuir constant of the guest species in a clathrate hydrate. Unlike previous studies on modeling of clathrate hydrate thermodynamics, the method presented in this paper does not regress either the intermolecular potentials or the properties of the empty hydrate from clathrate phase equilibria data. Also the properties of empty hydrate used in the theory do not depend on the nature and composition of the guest molecules. The predicted phase equilibria from the resulting theory are shown to be highly accurate and thermodynamically consistent by comparing them with the phase equilibria computed directly from molecular simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant viruses exploit the host machinery for targeting the viral genome-movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein la (PDLP la) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER-GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER-GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130-138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm interacts with NP via its N-terminal unfolded region and the NSm-NP complex could in turn interact with the ER membrane via the C-terminal coiled coil domain of NSm to form vesicles that are targeted to PD and there by assist the cell to cell movement of the viral genome complex. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a flume experiment of flow and sediment movement in a cavity. The flow velocity, sediment concentration and the mechanism of hydraulic sorting in the circulation flow are discussed. The quantity and patterns of sediment deposition in the circulation area are studied as well.