974 resultados para Easily available water
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1-3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5-3.0 m deep. The root intersects were counted on 224 m(2) of trench walls in 15 pits. Monitoring the soil water content showed that, after clear cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The traffic of wild animals can be identified as the main cause of finding captive animals in zoos and sorting centers in Brazil. The maintenance of these animals in captivity is usually justified by the prevention of total loss of individuals of that specie, if it becomes extinct in the wild, and also, the importance of these subjects in studies of basic biology of the species. Keeping animals in captivity environment brings the need to ensure the welfare of them. The high population density and limited space are some of the possible stressors that these individuals face in capivity. Even the low pressure feeding and food easily available could be stressors, since they change the budget activities typical of the specie, causing sedentary behavior and sometimes depression. The captive environment and activities related to it (handling, transport, social change and social isolation) could compromise the animal welfare. Reduction in life expectancy, impaired growth and reproduction, personal injury, illness, immunosuppression, exacerbated adrenal activity and abnormal behavior, are events often lonked to compromised welfare. Hence, assessment and promoter methods are used to provide the welfare to captive animals. The assessment can be made by hormonal and/or behavioral measures. Both are extremely important, and usually are used in combination, to provide more tangible results about the condition of the animal. The promotion of animal welfare can be accomplished through environmental enrichment, a technique which aims to provide a more complex and diverse environment, increasing the possibility of the animal express more natural behavior, or characteristic of the species. Thus, the objective of this dissertation is discuss the importance of animal welfare and the ways this can be evaluated and promoted... (Complete abstract click electronic access below)
Resumo:
Beef quality control, particularly its sensory characteristics, is an important factor for producers and retailers in order to satisfy consumer’s choices. Sensory analysis is an important tool to evaluate attributes that cannot be measured by easily available instrumental techniques, as well as texture – tenderness and juiciness – whose human perception is more complete, through trained panels. The aim of this study was evaluate the use of a beef sensory analysis protocol in three different laboratories. Six commercial samples of different brands of aged beef and 14 samples from crossbred animals (Bonsmara × Nelore - 7 and Canchim × Nelore - 7), aged during 14 days were analyzed. The samples were distributed to each participant laboratory, where 7 to 12 panelists were trained. A sheet containing a 9 cm non-structured scale with 14 attributes was used. The attributes were brown colour (CMAR); aponevrosis (PNAP); hydration degree (GH); characteristic beef aroma (SCCB); salty taste (SS); liver flavour (SF); fat flavour (SG); metallic flavour (SM); tenderness (MZ); juiciness (SL); fibrosity (FBS) and liver texture (SF). Obtained data was analyzed using analysis of variance and principal component analysis (PCA). The results showed that there was no interaction between samples and laboratories, indicating that all of them responded in a similar manner in relation to the samples, except PNAP attribute, which was expected as meat is very non-uniform normally. Samples were well differentiated in all laboratories as it could be observed in PCA graphs. With proper training it is possible to use a standard protocol for beef sensory analysis.
Resumo:
Fertigation management of gerbera crop has been many times performed inadequately, and it has been worsened when mixtures of substrates with different physical and chemical characteristics are used. Aiming at evaluating the production and quality of potted gerbera in two substrates and different levels of fertigation, the experiment was conducted in the greenhouse of the DRN/Soil Science, FCA/UNESP, Botucatu (SP). A 5 x 2 factorial randomized block design (5 levels of fertigation and 2 substrates) was adopted with 4 replications. Levels of fertigation corresponded to maintenance of 100% available water (AW) in the substrate; 100 to 80% of AW; 100 to 60% of AW; 100 to 40% of AW and 100 to 20% of AW. The substrates were as follows: 1- mixed coconut fiber (50% pellet coconut fiber and 50% coir fiber), 2- 40% red soil, 40% decomposed pine bark, 10% composition 1 (40% decomposed pine bark, 30% vermiculite and 30% carbonized rice husk) and 10% composition 2 (75% decomposed pine bark and 25% needles of pine). Plants at the marketing stage were evaluated according to the number of leaves; diameter of leaf surface; leaf area; fresh and dry phytomass of leaves, inflorescence and total plant; inflorescence number and diameter, stem diameter, plant height, leaf area rate and electrical conductivity of the substrate solution. Plants of better quality were obtained when they were maintained in levels of 100% available water and the mixed coconut fiber was used as substrate.
Evaluation of rapid tests for human immunodeficiency virus as a tool to detect recent seroconversion
Resumo:
The identification of recent HIV infection is important for epidemiological studies and to monitor the epidemic. The objective of this study was to evaluate two rapid tests that are easily available to the Brazilian scientific community for using as markers of recent HIV infection. The Rapid Test - HIV-1/2 Bio-Manguinhos (Bio-Manguinhos/Fiocruz, Brazil) and the Rapid Check HIV 1&2 (NDI-UFES, Center for Infectious Diseases, Universidade Federal do Espirito Santo) were tested, using 489 samples with HIV positive serology, from blood donors, previously classified as recent or long-term infection by serological testing algorithm for recent HIV seroconversion (STARHS) or LS-HIV Vitros assay methods. The samples were diluted prior to testing (1:50 and 1:100 for the Rapid Test - HIV-1/2 Bio-Manguinhos, and 1:500 and 1:600 for the Rapid Check HIV 1&2). Negative samples were considered recent infection, whereas those showing any color intensity were associated with long-term infection. The best dilutions were 1:100 for HIV-1/2 Bio-Manguinhos test (Kappa = 0.840; overall agreement = 0.93), and 1:500 for the Rapid Check HIV 1&2 (Kappa = 0.867; overall agreement = 0.94). The results suggest that both rapid tests can be used to detect recent seroconversion. (C) 2012 Elsevier Editora Ltda. All rights reserved.
Resumo:
The wheel - rail contact analysis plays a fundamental role in the multibody modeling of railway vehicles. A good contact model must provide an accurate description of the global contact phenomena (contact forces and torques, number and position of the contact points) and of the local contact phenomena (position and shape of the contact patch, stresses and displacements). The model has also to assure high numerical efficiency (in order to be implemented directly online within multibody models) and a good compatibility with commercial multibody software (Simpack Rail, Adams Rail). The wheel - rail contact problem has been discussed by several authors and many models can be found in the literature. The contact models can be subdivided into two different categories: the global models and the local (or differential) models. Currently, as regards the global models, the main approaches to the problem are the so - called rigid contact formulation and the semi – elastic contact description. The rigid approach considers the wheel and the rail as rigid bodies. The contact is imposed by means of constraint equations and the contact points are detected during the dynamic simulation by solving the nonlinear algebraic differential equations associated to the constrained multibody system. Indentation between the bodies is not permitted and the normal contact forces are calculated through the Lagrange multipliers. Finally the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces respectively. Also the semi - elastic approach considers the wheel and the rail as rigid bodies. However in this case no kinematic constraints are imposed and the indentation between the bodies is permitted. The contact points are detected by means of approximated procedures (based on look - up tables and simplifying hypotheses on the problem geometry). The normal contact forces are calculated as a function of the indentation while, as in the rigid approach, the Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the tangential forces. Both the described multibody approaches are computationally very efficient but their generality and accuracy turn out to be often insufficient because the physical hypotheses behind these theories are too restrictive and, in many circumstances, unverified. In order to obtain a complete description of the contact phenomena, local (or differential) contact models are needed. In other words wheel and rail have to be considered elastic bodies governed by the Navier’s equations and the contact has to be described by suitable analytical contact conditions. The contact between elastic bodies has been widely studied in literature both in the general case and in the rolling case. Many procedures based on variational inequalities, FEM techniques and convex optimization have been developed. This kind of approach assures high generality and accuracy but still needs very large computational costs and memory consumption. Due to the high computational load and memory consumption, referring to the current state of the art, the integration between multibody and differential modeling is almost absent in literature especially in the railway field. However this integration is very important because only the differential modeling allows an accurate analysis of the contact problem (in terms of contact forces and torques, position and shape of the contact patch, stresses and displacements) while the multibody modeling is the standard in the study of the railway dynamics. In this thesis some innovative wheel – rail contact models developed during the Ph. D. activity will be described. Concerning the global models, two new models belonging to the semi – elastic approach will be presented; the models satisfy the following specifics: 1) the models have to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the models have to consider generic railway tracks and generic wheel and rail profiles 3) the models have to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the models have to evaluate the number and the position of the contact points and, for each point, the contact forces and torques 4) the models have to be implementable directly online within the multibody models without look - up tables 5) the models have to assure computation times comparable with those of commercial multibody software (Simpack Rail, Adams Rail) and compatible with RT and HIL applications 6) the models have to be compatible with commercial multibody software (Simpack Rail, Adams Rail). The most innovative aspect of the new global contact models regards the detection of the contact points. In particular both the models aim to reduce the algebraic problem dimension by means of suitable analytical techniques. This kind of reduction allows to obtain an high numerical efficiency that makes possible the online implementation of the new procedure and the achievement of performance comparable with those of commercial multibody software. At the same time the analytical approach assures high accuracy and generality. Concerning the local (or differential) contact models, one new model satisfying the following specifics will be presented: 1) the model has to be 3D and to consider all the six relative degrees of freedom between wheel and rail 2) the model has to consider generic railway tracks and generic wheel and rail profiles 3) the model has to assure a general and accurate handling of the multiple contact without simplifying hypotheses on the problem geometry; in particular the model has to able to calculate both the global contact variables (contact forces and torques) and the local contact variables (position and shape of the contact patch, stresses and displacements) 4) the model has to be implementable directly online within the multibody models 5) the model has to assure high numerical efficiency and a reduced memory consumption in order to achieve a good integration between multibody and differential modeling (the base for the local contact models) 6) the model has to be compatible with commercial multibody software (Simpack Rail, Adams Rail). In this case the most innovative aspects of the new local contact model regard the contact modeling (by means of suitable analytical conditions) and the implementation of the numerical algorithms needed to solve the discrete problem arising from the discretization of the original continuum problem. Moreover, during the development of the local model, the achievement of a good compromise between accuracy and efficiency turned out to be very important to obtain a good integration between multibody and differential modeling. At this point the contact models has been inserted within a 3D multibody model of a railway vehicle to obtain a complete model of the wagon. The railway vehicle chosen as benchmark is the Manchester Wagon the physical and geometrical characteristics of which are easily available in the literature. The model of the whole railway vehicle (multibody model and contact model) has been implemented in the Matlab/Simulink environment. The multibody model has been implemented in SimMechanics, a Matlab toolbox specifically designed for multibody dynamics, while, as regards the contact models, the CS – functions have been used; this particular Matlab architecture allows to efficiently connect the Matlab/Simulink and the C/C++ environment. The 3D multibody model of the same vehicle (this time equipped with a standard contact model based on the semi - elastic approach) has been then implemented also in Simpack Rail, a commercial multibody software for railway vehicles widely tested and validated. Finally numerical simulations of the vehicle dynamics have been carried out on many different railway tracks with the aim of evaluating the performances of the whole model. The comparison between the results obtained by the Matlab/ Simulink model and those obtained by the Simpack Rail model has allowed an accurate and reliable validation of the new contact models. In conclusion to this brief introduction to my Ph. D. thesis, we would like to thank Trenitalia and the Regione Toscana for the support provided during all the Ph. D. activity. Moreover we would also like to thank the INTEC GmbH, the society the develops the software Simpack Rail, with which we are currently working together to develop innovative toolboxes specifically designed for the wheel rail contact analysis.