999 resultados para EPMA geochemistry
Resumo:
Trace element distributions in rock, soil and groundwater from of the Birrimian metasediments and granites located in the Northern Region of Ghana are described. High positive correlations are observed between selected major elements and trace metals (e.g. K2O and Rb, Al2O3 and V, Fe2O3 and V, and K2O and Y) in rocks and soils, and attributed to the presence of major source minerals. Ca and Sr were strongly correlated in groundwater, suggesting greater water-rock interaction. Low association of V with Fe is explained by (i) relatively higher mobility of V as against Fe; (ii) low Fe content in the parent rocks and (iii) variable sources of Fe and V.
Resumo:
Subcellular fractionation techniques were used to describe temporal changes (at intervals from T0 to T70 days) in the Pb, Zn and P partitioning profiles of Lumbricus rubellus populations from one calcareous (MDH) and one acidic (MCS) geographically isolated Pb/Zn-mine sites and one reference site (CPF). MDH and MCS individuals were laboratory maintained on their native field soils; CPF worms were exposed to both MDH and MCS soils. Site-specific differences in metal partitioning were found: notably, the putatively metal-adapted populations, MDH and MCS, preferentially partitioned higher proportions of their accumulated tissue metal burdens into insoluble CaPO4-rich organelles compared with naive counterparts, CPF. Thus, it is plausible that efficient metal immobilization is a phenotypic trait characterising metal tolerant ecotypes. Mitochondrial cytochrome oxidase II (COII) genotyping revealed that the populations indigenous to mine and reference soils belong to distinct genetic lineages, differentiated by 13%, with 7 haplotypes within the reference site lineage but fewer (3 and 4, respectively) in the lineage common to the two mine sites. Collectively, these observations raise the possibility that site-related genotype differences could influence the toxico-availability of metals and, thus, represent a potential confounding variable in field-based eco-toxicological assessments.
The use of stalagmite geochemistry to detect past volcanic eruptions and their environmental impacts
Resumo:
Palaeodata in synthesis form are needed as benchmarks for the Palaeoclimate Modelling Intercomparison Project (PMIP). Advances since the last synthesis of terrestrial palaeodata from the last glacial maximum (LGM) call for a new evaluation, especially of data from the tropics. Here pollen, plant-macrofossil, lake-level, noble gas (from groundwater) and δ18O (from speleothems) data are compiled for 18±2 ka (14C), 32 °N–33 °S. The reliability of the data was evaluated using explicit criteria and some types of data were re-analysed using consistent methods in order to derive a set of mutually consistent palaeoclimate estimates of mean temperature of the coldest month (MTCO), mean annual temperature (MAT), plant available moisture (PAM) and runoff (P-E). Cold-month temperature (MAT) anomalies from plant data range from −1 to −2 K near sea level in Indonesia and the S Pacific, through −6 to −8 K at many high-elevation sites to −8 to −15 K in S China and the SE USA. MAT anomalies from groundwater or speleothems seem more uniform (−4 to −6 K), but the data are as yet sparse; a clear divergence between MAT and cold-month estimates from the same region is seen only in the SE USA, where cold-air advection is expected to have enhanced cooling in winter. Regression of all cold-month anomalies against site elevation yielded an estimated average cooling of −2.5 to −3 K at modern sea level, increasing to ≈−6 K by 3000 m. However, Neotropical sites showed larger than the average sea-level cooling (−5 to −6 K) and a non-significant elevation effect, whereas W and S Pacific sites showed much less sea-level cooling (−1 K) and a stronger elevation effect. These findings support the inference that tropical sea-surface temperatures (SSTs) were lower than the CLIMAP estimates, but they limit the plausible average tropical sea-surface cooling, and they support the existence of CLIMAP-like geographic patterns in SST anomalies. Trends of PAM and lake levels indicate wet LGM conditions in the W USA, and at the highest elevations, with generally dry conditions elsewhere. These results suggest a colder-than-present ocean surface producing a weaker hydrological cycle, more arid continents, and arguably steeper-than-present terrestrial lapse rates. Such linkages are supported by recent observations on freezing-level height and tropical SSTs; moreover, simulations of “greenhouse” and LGM climates point to several possible feedback processes by which low-level temperature anomalies might be amplified aloft.
Resumo:
The Central Atlantic Magmatic Province (CAMP), emplaced at the Triassic-Jurassic (T-J) boundary (-200 Ma), is among the largest igneous provinces on Earth. The Maranhao basin in NE Brazil is located around 700 km inland and 2000 km from the site of the earliest Pangea disruption. The CAMP tholeiites occur only in the western part of the basin and have been described as low and high-Ti. Here we document the occurrence of two sub-groups among the high-Ti tholeiites in the Western Maranhao basin. The major and trace elements and the Sr-Nd-Pb isotopic ratios define three chemical groups corresponding to the low-Ti (TiO(2)< 1.3 wt.%), high-Ti (TiO(2)-2.0 wt.%) and evolved high-Ti (TiO(2 >)3 wt.%) western Maranhao basin tholeiites (WMBT). The new (40)Ar/(39)Ar plateau ages obtained on plagioclase separates for high-Ti (199.7 +/- 2.4 Ma) and evolved high-Ti WMBT (197.2 +/- 0.5 Ma and 198.2 +/- 0.6 Ma) are indistinguishable and identical to those of previously analyzed low-Ti WMBT (198.5 +/- 0.8 Ma) and to the mean (40)Ar/(39)Ar age of the CAMP (199 +/- 2.4 Ma). We also present the first Re-Os isotopic data for CAMP basalts. The low and high-Ti samples display mantle-like initial ((187)Os/(188)Os)(i) ranging from 0.1267 to 0.1299, while the evolved high-Ti samples are more radiogenic (((187)Os/ (188)Os)(i) up to 0.184) We propose that the high-Ti WMBT were derived from the sub-lithospheric asthenosphere, and contaminated during ascent by interaction with the subcontinental lithospheric mantle (SCLM). The evolved high-Ti WMBT were derived from the same asthenospheric source but experienced crustal contamination. The chemical characteristics of the low-Ti group can be explained by partial melting of the most fertile portions of the SCLM metasomatized during paleo-subduction. Alternatively, the low-Ti WMBT could be derived from the sub-lithospheric asthenosphere but the resulting melts may have undergone contamination by the SCLM. The occurrences of high-Ti basalts are apparently not restricted to the area of initial continental disruption which may bring into question previous interpretations such as those relating high-Ti CAMP magmatism to the initiation of Atlantic ridge spreading or as the expression of a deep mantle plume. We propose that the CAMP magmatism in the Maranhao basin may be attributed to local hotter mantle conditions due to the combined effects of edge-driven convection and large-scale mantle warming under the Pangea supercontinent. The involvement of a mantle-plume with asthenosphere-like isotopic characteristics cannot be ruled out either as one of the main source components of the WMBT or as a heat supplier. (C) 2010 Elsevier BM. All rights reserved.
Resumo:
Five zones along a transect of 180 m were selected for study on the Island of Pai Matos (Sao Paulo, Brazil). Four of the zones are colonised by vascular plants (Spartina SP, Laguncularia LG, Avicennia AV and Rhizophora RH) and were denominated soils, and the other zone, which lacks vegetation, was denominated sediment (SD). The geochemical conditions differed significantly in soils and sediment and also at different depths. The soils were oxic (Eh > 350 mV) or suboxic (Eh: 350-100 mV) at the surface and anoxic (Eh < 100 mV) at depth, whereas in the sediment anoxic conditions prevailed at all depths, but with a lower concentration of sulphides in the pore water and pyrite in the solid fraction. Under these geochemical conditions Fe is retained in the soils, while the Mn tends to be mobilized and lost. The most abundant form of iron oxyhydroxide was lepidocrocite (mean concentration for all sites and depths, 45 +/- 19 mu mol g(-1)), followed by goethite (30 19 mu mol g(-1))and ferrihydrite (19 +/- 11 mu mol g(-1)),with significant differences among the mean concentrations. There was a significant decrease with depth in all the types of Fe oxyhydroxides measured, particularly the poorly crystalline forms. The pyrite fraction was an important component of the free Fe pool (non-silicate Fe) in all soils as well as in the sediment, especially below 20 cm depth (mean concentration for all sites and depths, 60 +/- 54 mu mol CI). Furthermore, the mean concentration of Fe-pyrite for all sites and depths was higher than that obtained for any of the three Fe oxyhydroxides measured. The Fe-AVS was a minor fraction, indicating that the high concentrations of dissolved Fe in the soils in the upper area of the transect result from the oxidation of Fe sulphides during low tide. Mossbauer spectroscopy also revealed that most of the Fe (III) was associated with silicates, in this case nontronite. The presence of crystals of pyrite associated with phyllosilicates in samples from the upper layer of the soils may indicate that pyritization of this form of Fe(III) is more rapid than usually reported for ocean bed sediments. The sequential extraction of Mn did not reveal any clearly dominant fraction, with the Mn-carbonate fraction being the most prevalent, followed by exchangeable Mn and oxides of Mn, whereas pyrite-Mn and Mn associated with crystalline Fe-oxides were present at significantly lower concentrations. The high concentration of dissolved Mn found in the soils in the lower part of the transect is consistent with the fact that the solubility is determined by the carbonate fraction. Unlike for Fe, in the soils in the higher zone, which are subject to intense drainage during low tide, there was loss of Mn, as reflected by the concentration of total Mn. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Elemental and Sr-Nd isotopic data on metatexites, diatexites, orthogneisses and charnockites from the central Ribeira Fold Belt indicate that they are LILE-enriched weakly peraluminous granodiorites. Harker and Th-Hf-La correlation trends suggest that these rocks represent a co-genetic sequence, whereas variations on CaO, MnO, Y and HREE for charnockites can be explained by garnet consumption during granulitic metamorphism. Similar REE patterns and isotopic results of epsilon(565)(Nd) = -5.4 to -7.3 and (87)Sr/(86)Sr(565) = 0.706-0.711 for metatexites, diatexites, orthogneisses and charnockites, as well as similar T(DM) ages between 2.0 and 1.5 Ga are consistent with evolution from a relatively homogeneous and enriched common crustal (metasedimentary) protolith. Results suggest a genetic link between metatexites, diatexites, orthogneisses and charnockites and a two-step process for charnockite development: (a) generation of the hydrated igneous protoliths by anatexis of metasedimentary rocks; (b) continuous high-grade metamorphism that transformed the ""S-type granitoids"" (leucosomes and diatexites) into orthogneisses and, as metamorphism and dehydration progressed, into charnockites. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Early Paleozoic geodynamic evolution in SW Iberia is believed to have been dominated by the opening of the Rheic Ocean. The Rheic Ocean is generally accepted to have resulted from the drift of peri-Gondwanan terranes such as Avalonia from the northern margin of Gondwana during Late Cambrian-Early Ordovician times. The closure of the Rheic Ocean was the final result of a continent-continent collision between Gondwana and Laurussia that produced the Variscan orogen. The Ossa-Morena Zone is a peri-Gondwana terrane, which preserves spread fragments of ophiolites - the Internal Ossa-Morena Zones Ophiolite Sequences (IOMZOS). The final patchwork of the IOMZOS shows a complete oceanic lithospheric sequence with geochemical characteristics similar to the ocean-floor basalts, without any orogenic fingerprint and/or crustal contamination. The IOMZOS were obducted and imbricated with high pressure lithologies. Based on structural, petrological and whole-rock geochemical data, the authors argue that the IOMZOS represent fragments of the oceanic lithosphere from the Rheic Ocean. Zircon SHRIMP U-Pb geochronological data on metagabbros point to an age of ca. 480 Ma for IOMZOS, providing evidence of a well-developed ocean in SW Iberia during this period, reinforcing the interpretation of the Rheic Ocean as a wide ocean among the peri-Gondwanan terranes during Early Ordovician times.
Resumo:
Trace element and isotopic data obtained for mantle spinel Iherzolites and diorite dykes from the Baldissero massif (Ivrea-Verbano Zone, Western Italy) provide new, valuable constraints on the petrologic and geodynamic evolution of the Southern Alps in Paleozoic to Mesozoic times. Whole rock and mineral chemistry indicates that Baldissero Iherzolites can be regarded as refractory mantle residues following limited melt extraction. In particular, the Light Rare Earth Elements (LREE)-depleted and fractionated compositions of whole rock and clinopyroxene closely match modelling results for refractory residues after low degrees (similar to 4-5%) of near-fractional melting of depleted mantle, possibly under garnet-facies conditions. Following this, the peridotite sequence experienced subsolidus re-equilibration at lithospheric spinel-facies conditions and intrusion of several generations of dykes. However, Iherzolites far from dykes show very modest metasomatic changes, as evidenced by the crystallisation of accessory titanian pargasite and the occurrence of very slight enrichments in highly incompatible trace elements (e.g. Nb). The Re-Os data for Iherzolites far from the dykes yield a 376 Ma (Upper Devonian) model age that is considered to record a partial melting event related to the Variscan orogenic cycle s.l. Dioritic dykes cutting the mantle sequence have whole rock, clinopyroxene and plagioclase characterised by high radiogenic Nd and low radiogenic Sr, which point to a depleted to slightly enriched mantle source. Whole rock and mafic phases of diorites have high Mg# values that positively correlate with the incompatible trace element concentrations. The peridotite at the dyke contact is enriched in orthopyroxene, iron and incompatible trace elements with respect to the Iherzolites far from dykes. Numerical simulations indicate that the geochemical characteristics of the diorites can be explained by flow of a hydrous, silica-saturated melt accompanied by reaction with the ambient peridotite and fractional crystallisation. The composition of the more primitive melts calculated in equilibrium with the diorite minerals show tholeiitic to transitional affinity. Internal Sm-Nd, three-point isochrons obtained for two dykes suggest an Upper Triassic-Lower Jurassic emplacement age (from 204 31 to 198 29 Ma). Mesozoic igneous events are unknown in the southern Ivrea-Verbano Zone (IVZ), but the intrusion of hydrous melts, mostly silica-saturated, have been well documented in the Finero region, i.e. the northernmost part of IVZ and Triassic magmatism with calc-alkaline to shoshonitic affinity is abundant throughout the Central-Eastern Alps. The geochemical and chronological features of the Baldissero diorites shed new light on the geodynamic evolution of the Southern Alps before the opening of the Jurassic Tethys. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Amazonian Craton comprises an Archean domain surrounded by four successively younger Proterozoic tectonic provinces. Within the Rio-Negro-Juruena province the Serra da Providencia Intrusive Suite (1.60 and 1.53 Ga) consists of A-type rapakivi granites, charnockites and mangerites genetically associated with diabase dikes, gabbros and amphibolites lites. The original mafic melts were derived from a depleted mantle source (epsilon(Nd(T)) + 2.5 to +2.8; epsilon(Sr(T)) - 12.1). Underplated mafic magma induced melting of a short-lived fielsic crust, thus originating coeval felsic-inafic magmatism in a continental intraplate setting. The Colorado Complex, assigned to the Rondonian-San Ignacio province, comprises 1.35-1.36 Ga intrusive bimodal magmatism represented by monzonite gneisses associated with amphibolite, gabbro and metadiabase dikes intercalated with metasediments with detrital zircon that yield U-Pb ages of 1.35 to 1.42 Ga. Mafic samples display juvenile signatures (epsilon(Nd(T)) 0.0 to +5.2; epsilon(Sr(T)) -5.0 to -30.7) and are less contaminated than the Serra da Previdencia and Nova Brasiladndia ones. The generation of the basaltic magma is related to the subduction of an oceanic slab below the peridotite wedge (intraoceanic arc setting). Fluids and/or small melts from the slab impregnated the mantle. The Nova Brasilandia Sequence (Sunsas-Aguapei province) comprises a metasedimentary sequence intruded by 1.10-1.02 Ga metadiabases, gabbros, meta-gabbros, and amphibolites associated with granitic plutons (bimodal magmatism). The original tholeiitic magmas, derived from a depleted source (epsilon(Nd(T)) = +3.1 to +5.0), in a proto-oceanic setting, underwent subsequent contamination by the host rocks, as indicated by the isotopic and trace element data.
Resumo:
Several major iron deposits occur in the Quadrilatero Ferrifero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Caue Formation, regionally called itabirite, was transformed into high- (Fe >64%) and lowgrade (30%
Resumo:
The Mako bimodal volcanic belt of the Kedougou-Kenieba inlier is composed of volcanic basalts and peridotites interbedded by quartzites and limestones intruded by different generations of granitoids. The early volcanic episode of the belt is constituted of submarine basalts with peridotite similar to those of the oceanic abyssal plains. It is intruded by the Badon Kakadian TTG-granitic batholite dated around 2200 Ma. The second volcanic phase is constituted of basaltic, andesitic, and felsitic flows exhibit structures of aerial volcanic rocks. It is intruded by granites dated between 2160 and 2070 Ma. The general pattern of trace element variation of submarine volcanic rocks is consistent with those of basalts from oceanic plateaus which are the modern equivalent of the Archean greenstones belts. The Nd and Sr isotopic systematics typical of juvenile material indicates that the source of these igneous rocks is derived from a depleted mantle source. These results are consistent with the idea of a major accretion within the West African Craton occurring at about 2.1 Ga and corresponding to an important process of mantle-oceanic lithosphere differentiation.