968 resultados para ELECTRON-TRANSFER REACTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the ocean in the cycling of oxygenated volatile organic compounds (OVOCs) remains largely unanswered due to a paucity of datasets. We describe the method development of a membrane inlet-proton transfer reaction/mass spectrometer (MI-PTR/MS) as an efficient method of analysing methanol, acetaldehyde and acetone in seawater. Validation of the technique with water standards shows that the optimised responses are linear and reproducible. Limits of detection are 27 nM for methanol, 0.7 nM for acetaldehyde and 0.3 nM for acetone. Acetone and acetaldehyde concentrations generated by MI-PTR/MS are compared to a second, independent method based on purge and trap-gas chromatography/flame ionisation detection (P&T-GC/FID) and show excellent agreement. Chromatographic separation of isomeric species acetone and propanal permits correction to mass 59 signal generated by the PTR/MS and overcomes a known uncertainty in reporting acetone concentrations via mass spectrometry. A third bioassay technique using radiolabelled acetone further supported the result generated by this method. We present the development and optimisation of the MI-PTR/MS technique as a reliable and convenient tool for analysing seawater samples for these trace gases. We compare this method with other analytical techniques and discuss its potential use in improving the current understanding of the cycling of oceanic OVOCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present here vertical fluxes of oxygenated volatile organic compounds (OVOCs) measured with eddy covariance (EC) during the period of March to July 2012 near the southwest coast of the United Kingdom. The performance of the proton-transfer-reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Observed mixing ratios and fluxes of OVOCs (specifically methanol, acetaldehyde, and acetone) vary significantly with time of day and wind direction. Higher mixing ratios and fluxes of acetaldehyde and acetone are found in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol mixing ratio and flux do not demonstrate consistent diel variability, suggesting sources in addition to plants. We estimate air-sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1 sigma) mixing ratio of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction out-paces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime mixing ratios of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long-distance transport, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonenzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low-abundance posttranslational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron-transfer dissociation (ETD) and collision induced dissociation ( CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the anodic oxidation of several arenes and anthracenes within room-temperature ionic liquids (RTILs). In particular, the heterogeneous electron-transfer rates (k(0)) for substituted anthracenes and arenes are also investigated in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(2)mim][NTf2]) and found not to obey the outer-sphere Marcus-type behavior of these compounds in contrast to the behavior in traditional organic solvents,in particular the predictions for k(0) with molecular size and solvent static dielectric constant. To obtain the electron-transfer rate for 9-phenylanthracene, the dimerization and heterogeneous electron-transfer kinetics of its electrogenerated radical cations is studied in [C(2)mim][NTf2] and eight other RTILs and are both found to be largely independent of the solution viscosity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ruthenium is one of the poorest catalysts for CO oxidation under normal conditions (low or medium O coverage and normal temperature). However, a recent study [Science 285, 1042 (1999)] reveals that, under femtosecond laser irradiation, CO2 can be formed on the Ru surface, and the reaction follows an electron-mediated mechanism. We carried out density functional theory calculations to investigate CO oxidation via an electron-mediated mechanism on Ru(0001). By comparison to the reaction under normal conditions, following features emerge in the electron-mediated mechanism: (i) more reaction channels are open; (ii) the reaction barrier is significantly lowered. The physical origins for these novel features have been analyzed. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthracene-based, H+-driven, ‘off–on–off’ fluorescent PET (photoinduced electron transfer) switches are immobilized on organic and inorganic polymeric solids in the form of Tentagel® and silica, respectively. The environment of the organic bead displaces apparent switching thresholds towards lower pH values whereas the Si–O- groups of silica electrostatically cause the opposite effect. These switches are ternary logic gate tags, one of which can be particularly useful in strengthening molecular computational identification (MCID) of small solid objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel ligand 4'-diferrocenylallcyne-2,2':6',2 ''-terpyridine (7; Fc-C C-Fc-tpy; tpy = terpyridyl; Fc = ferrocenyl) and its Ru2+ complexes 8-10 have been synthesized and characterized by single-crystal X-ray diffraction, cyclic voltammetry, and UV-vis and luminescence spectroscopy. Electrochemical data and UV absorption and emission spectra indicate that the insertion of an ethynyl group causes delocalization of electrons in the extended pi* orbitals. Cyclic voltammetric measurements of 7 show two successive reversible one-electron-oxidation processes with half-wave potentials of 0.53 and 0.78 V. The small variations of the E-1/2 values for the Fe2+/Fe3+ redox couples after the coordination of the Ru2+ ion suggest a weak interaction between the Ru2+ and Fe2+ centers. After insertion of an ethynyl group, UV-vis absorption spectra show a red shift of the absorption peak of the (1)[(d(pi)(Fe))(6)]->(1)[(d(pi)(Fe))(5)(pi*(Ru)(tpy))(1)] MMLCT of the Ru2+ complexes. The Ru2+ complex 8 exhibits the strongest luminescence intensity (lambda(em)(max) 712 nm, Phi(em) = 2.63 x 10(-4), tau = 323 ns) relative to analogous ferrocene-based terpyridine Ru(II) complexes in H2O/CH3CN (4/1 v/v) solution.