990 resultados para ECR ion source
Resumo:
To meet the requirements of providing high-intensity heavy ion beams the direct plasma injection scheme (DPIS) was proposed by a RIKEN-CNS-TIT collaboration. In this scheme a radio frequency quadrupole (RFQ) was joined directly with the laser ion source (LIS) without a low-energy beam transport (LEBT) line. To find the best design of the RFQ that will have short length, high transmission efficiency and small emittance growth, beam dynamics designs with equipartitioning design strategy and with matched-only design strategy have been performed, and a comparison of their results has also been done. Impacts of the input beam parameters on transmission efficiency are presented, too. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C6+ beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.
Resumo:
Some superconducting magnets research at IMP (Institute of Modern Physics, CAS, Lanzhou) will be described in this paper. Firstly, a superconducting electron cyclotron resonance ion source (SECRAL) was successfully built to produce intense beams of highly charged heavy ions for Heavy Ion Research Facility in Lanzhou (HIRFL). An innovation design of SECRAL is that the three axial solenoid coils are located inside of a sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. Some excellent results of ion beam intensity have been produced and SECRAL has been put into operation to provide highly charged ion beams for HIRFL since May 2007. Secondly, a super-ferric dipole prototype of FAIR Super-FRS is being built by FCG (FAIR China Group) in cooperation with GSI. Its superconducting coils and cryostat is made and tested in the Institute of Plasma Physics (IPP, Hefei), and it more 50 tons laminated yoke was made in IMP. This super-ferric dipole static magnetic field was measured in IMP, it reach to the design requirement, ramping field and other tests will be done in the future. Thirdly, a 3 T superconducting homogenous magnetic field solenoid with a 70 mm warm bore has been developed to calibrate Hall sensor, some testing results is reported. And a penning trap system called LPT (Lanzhou Penning Trap) is now being developed for precise mass measurements.
Resumo:
本文概述了 A > 170 质量区重丰中子同位素研究的主要工作和意义;介绍了 A > 170 重丰中子同位素合成、分离和鉴别方法;详细论述了激光离子源的原理、设计及其同传统离子源相比所具有的优越性;在文章结尾,设计了一个物理实验,实验目的在于:1)寻找 ~(181)Yb新核素;2)揭示天体物理学中~(180m)Ta 的产生问题。我们对反应截面进行了分析,并对产额进行了估计,证明了此实验设计的合理性,进而说明了带激光离子源的同位素分离器适用于产生截面很低的新核素和衰变研究。本文重点讨论了激光离子源的各方面问题:介绍了激光多步共振电离原理和激光离子源原理;具体分析了热毛细管式激光离子源元素选择性的产生及其影响的因素;讨论了在设计、加工过程中的具体问题;描述了所使用的激光技术;通过在线实验验证了热毛细管式激光离子源的元素选择性和分离效率。
Resumo:
本文介绍了一种新型的用于在线同位素分离器的离子源——激光离子源。这种离子源将会大大提高在线同位素分离器的化学选择性,给新核素的合成及其衰变性质研究注入巨大的活力。论文首先介绍了激光离子源的工作原理和国际上研制激光离子源的情况。其次介绍了我们在研制热管式激光离子源方面取得的以下进展:(1)激光器系统已经可以使用,完成了光路传输与合成系统;(2)研制了一个用于研究激光离子源特性的离线实验装置;(3)获得了铥元素的激光多步共振电离信号,测量了Ta,Nb-Zr合金和内表面涂有了TaC的Nb-Zr合金电离管表面电离电流及激光共振电离电流随温度纷变化曲线,得到了热管式激光离子源的化学选择性,对元素铥的化学选择性可达封50-10000,论文最后对将要做的工作提出了进一步的设想,对激光离子源的前景做了展望。
Resumo:
Gas phase ion-molecular reactions of C-60 with the ion system of CS2 have been studied in the ion source of mass spectrometer. It was found for the first time that the sulfuric derivative of C-60-C60S+ was the main ions in the ion source, they did not react with C-60 to form adduct ions due to their highly saturated structures. According to the dynamic analysis, the product ion came from the reaction of C-60 with the fragment ion S+. The adduct ion may have the structure of epsulfide that is advantageous in energy.
Resumo:
The unimolecular charge separations and neutral loss decompositions of the doubly charged ions [C7H7Cl](2+), [C7H6Cl](2+) and [C7H5Cl](2+) produced in the ion source by 70 eV electron impact from 3 chloro-toluenes and benzyl chloride isomers were studied
Resumo:
A radical aromatic substitution resulting in biphenylcarboxylic acid is inferred for the decomposition of benzoyl peroxide from the chemical ionization and collision-induced dissociation mass spectra. The thermolysis of benzoyl peroxide gives rise to a benzoyloxy radical, which undergoes rapid decarboxylation and hydrogen abstraction leading to phenyl radical and benzoic acid, respectively. Attack of the resulting phenyl radical on the benzoic acid results in bipbenylcarboxylic acid. On the other hand, the phenyl radical abstracts a hydrogen atom to yield benzene, which is then subjected to the attack of a benzoyloxy radical, affording phenyl benzoate. This substitution reaction rather than the recombination of benzoyloxy and phenyl radicals is found to be responsible for the formation of phenyl benzoate under the present conditions.
Resumo:
A study of doubly charged ion mass spectra (2E spectra), the substituents effect and the target gas pressure deppendence of biphenyl derivitives was presented in this work. The decomposition of doubly charged ion formed in the ion source is dominant by the losses of H, C2H2, C2H4 and HR(R represents substituent). [C12H8]2+, [C12H6]2+ and [C10H6]2+ among others are the most stable product ions. The substituents effect is Various in different decomposition reactions, and in some cases it can not be predicted by Hammett equition. While the TIC of 2E spectra was markedly influenced by the target gas pressure, but the fragmentation pattern of the 2E spectra is independent of it.
Resumo:
On a reversed phase Hypersil BDS C-18 (200 mm x 4. 6 mm, 5 mu m) column, 20 amino acids, which were derivatized using 2-(11H-benzo [a] carbazol-11-yl) ethyl carbonochloridate (BCEC-Cl) as pre-column derivatization reagent, were separated in conjunction with a gradient elution. Optimum derivatization was obtained by reacting of amino acids with BCEC-Cl at room temperature for 5 min in the presence of sodium borate catalyst in acetonitrile solvent. The fluorescence excitation and emission wavelengths were 279 nm and 380 nm respectively. The identification of amino acid derivatives from hydrolyzed bovine serum albumin and bee pollen was carried out by post-column mass spectrometry with electrospray ion source in positive ion mode. Linear correlation coefficients of the amino acid derivatives were > 0.9990, and detection limits (at signal to noise of 3:1) were 1.49 - 19.74 fmol for the labeled amino acids.
Resumo:
Reported herein are measured absolute single, double, and triple charge exchange (CE) cross sections for the highly charged ions (HCIs) Cq+ (q=5,6), Oq+ (q=6,7,8), and Neq+ (q=7,8) colliding with the molecular species H2O, CO, and CO2. Present data can be applied to interpreting observations of x-ray emissions from comets as they interact with the solar wind. As such, the ion impact energies of 7.0q keV (1.62–3.06 keV/amu) are representative of the fast solar wind, and data at 1.5q keV for O6+ (0.56 keV/amu) on CO and CO2 and 3.5q keV for O5+ (1.09 keV/amu) on CO provide checks of the energy dependence of the cross sections at intermediate and typical slow solar wind velocities. The HCIs are generated within a 14 GHz electron cyclotron resonance ion source. Absolute CE measurements are made using a retarding potential energy analyzer, with measurement of the target gas cell pressure and incident and final ion currents. Trends in the cross sections are discussed in light of the classical overbarrier model (OBM), extended OBM, and with recent results of the classical trajectory Monte Carlo theory.
Absolute photoionization cross sections for Xe4+, Xe5+, and Xe6+ near 13.5 nm: Experiment and theory
Resumo:
Absolute photoionization cross-section measurements for a mixture of ground and metastable states of Xe4+, Xe5+, and Xe6+ are reported in the photon energy range of 4d -> nf transitions, which occur within or adjacent to the 13.5 nm window for extreme ultraviolet lithography light source development. The reported values allow the quantification of opacity effects in xenon plasmas due to these 4d -> nf autoionizing states. The oscillator strengths for the 4d -> 4f and 4d -> 5f transitions in Xeq+ (q=1-6) ions are calculated using nonrelativistic Hartree-Fock and random phase approximations. These are compared with published experimental values for Xe+ to Xe3+ and with the values obtained from the present experimental cross-section measurements for Xe4+ to Xe6+. The calculations assisted in the determination of the metastable content in the ion beams for Xe5+ and Xe6+. The experiments were performed by merging a synchrotron photon beam generated by an undulator beamline of the Advanced Light Source with an ion beam produced by an electron cyclotron resonance ion source.
Resumo:
Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Feq+ (q = 5-13) ions with H2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe9+ ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H2O up to H2O10+.
Resumo:
Smart management of maintenances has become fundamental in manufacturing environments in order to decrease downtime and costs associated with failures. Predictive Maintenance (PdM) systems based on Machine Learning (ML) techniques have the possibility with low added costs of drastically decrease failures-related expenses; given the increase of availability of data and capabilities of ML tools, PdM systems are becoming really popular, especially in semiconductor manufacturing. A PdM module based on Classification methods is presented here for the prediction of integral type faults that are related to machine usage and stress of equipment parts. The module has been applied to an important class of semiconductor processes, ion-implantation, for the prediction of ion-source tungsten filament breaks. The PdM has been tested on a real production dataset. © 2013 IEEE.
Resumo:
The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.