172 resultados para Dysplastic Nevi
Resumo:
Acetabular retroversion is the result of an externally rotated hemipelvis rather than a focal overgrowth of the anterior wall and/or hypoplasia of the posterior wall. Acetabular retroversion is a cause of pincer impingement which, if left untreated, can lead to hip pain and osteoarthritis. The causal surgical treatment in hips with acetabular retroversion is acetabular reorientation with a reverse periacetabular osteotomy (PAO). Indication is based on a positive correlation among symptoms (typically groin pain), physical findings on examination (positive anterior impingement test and decreased flexion and internal rotation), and radiographic signs for acetabular retroversion. These include a positive crossover, posterior wall, and ischial spine sign. A reverse PAO is performed with four osteotomies and a controlled fracture. Unlike reorientation of the acetabular fragment in dysplastic hips, correction for acetabular retroversion is achieved by a combined extension and internal rotation of the acetabular fragment. Typically, a small supra-acetabular wedge resection is required to allow sufficient extension of the fragment. The quality of acetabular reorientation is evaluated by intraoperative AP pelvic radiographs. In addition, intraoperative testing of range of motion following acetabular reorientation is mandatory. An arthrotomy and offset correction of the femoral head-neck area is indicated in hips with decreased internal rotation following acetabular reorientation. In a 10-year follow-up study of reverse PAO, a favorable outcome with preservation of all native joints was found. Correct acetabular orientation and, if necessary, a concomitant offset correction were the keys of successful outcome.
Resumo:
Increasing evidence demonstrates that the thrombin receptor (protease activated receptor-1, PAR-1) plays a major role in tumor invasion and contributes to the metastatic phenotype of human melanoma. We demonstrate that the metastatic potential of human melanoma cells correlates with overexpression of PAR-1. The promoter of the PAR-1 gene contains multiple putative AP-2 and Sp1 consensus elements. We provide evidence that an inverse correlation exists between the expression of AP-2 and the expression of PAR-1 in human melanoma cells. Re-expression of AP-2 in WM266-4 melanoma cells (AP-2 negative) resulted in decreased mRNA and protein expression of PAR-1 and significantly reduced the tumor potential in nude mice. ChIP analysis of the PAR-1 promoter regions bp −365 to −329 (complex 1) and bp −206 to −180 (complex 2) demonstrates that in metastatic cells Sp1 is predominantly binding to the PAR-1 promoter, while in nonmetastatic cells AP-2 is bound. In vitro analysis of complex 1 demonstrates that AP-2 and Sp1 bind to this region in a mutually exclusive manner. Transfection experiments with full-length and progressive deletions of the PAR-1 promoter luciferase constructs demonstrated that metastatic cells had increased promoter activity compared to low and nonmetastatic melanoma cells. Our data shows that exogenous AP-2 expression decreased promoter activity, while transient expression of Sp1 further activated expression of the reporter gene. Mutational analysis of complex 1 within PAR-1 luciferase constructs further demonstrates that the regulation of PAR-1 is mediated through interactions with AP-2 and Sp1. Moreover, loss of AP-2 in metastatic cells alters the AP-2 to Sp1 ratio and DNA-binding activity resulting in overexpression of PAR-1. In addition, we evaluated the expression of AP-2 and PAR-1 utilizing a tissue microarray of 93 melanocytic lesions spanning from benign nevi to melanoma metastasis. We report loss of AP-2 expression in malignant tumors compared to benign tissue while PAR-1 was expressed more often in metastatic melanoma cells than in benign melanocytes. We propose that loss of AP-2 results in increased expression of PAR-1, which in turn results in upregulation of gene products that contribute to the metastatic phenotype of melanoma. ^
Resumo:
Vorbesitzer: Abraham Berliner
Resumo:
Vorbesitzer: Abraham Berliner
Resumo:
Vorbesitzer: Wilhelm Carl von Rothschild;
Resumo:
Vorbesitzer: Wilhelm Carl von Rothschild
Resumo:
Vorbesitzer: Abraham Merzbacher;
Resumo:
Chronic inflammation is an established risk factor in the pathogenesis of many cancers. Pancreatic ductal adenocarcinoma, a malignancy with a particularly dismal prognosis, is no exception. Cyclooxygenase-2, a key enzyme induced by tissue injury, has a critical role in the generation of bioactive lipids known as prostaglandins. COX-2 overexpression is a frequent finding in pancreatic cancer, chronic pancreatitis and pancreatic intraepithelial neoplasias. To explore mechanisms through which chronic inflammation establishes and maintains a protumorigenic environment, we designed a mouse model overexpressing COX-2 in pancreatic parenchyma (BK5.COX-2 mice). We discovered that constitutive expression of COX-2 has a number of important sequelae, including upregulation of additional eicosanoid-generating enzymes and proinflammatory cytokines. Many of these molecular alterations precede the onset of significant histopathological changes. Increased levels of prostaglandins E2, D2, and F2α, 5-, 12-, and 15-hydroxyeiosatetraenoic acid (HETEs) were documented in tumors and pancreata of younger transgenic mice. Using a TaqMan™ Mouse Immune Panel, we detected elevated mRNAs for a number of proinflammatory cytokines (e.g., TNFα, IL-1β, IL-6). ^ Histological examination revealed early changes in the pancreas with similarities to human chronic pancreatitis, including loss of acinar cells, appearance of metaplastic ducts, and increased deposition of stroma. As the lesions progress, features typical of dysplastic and neoplastic cells emerged within the metaplastic ductal complexes, including cellular and nuclear atypia, crowding of cells, and loss of normal tissue architecture. The amount of fibroinflammatory stroma increased considerably; numerous small vessels were evident. A number of immunocytes from both the myeloid and lymphoid lineages were identified in transgenic pancreata. Neutrophils were the earliest to infiltrate, followed shortly by macrophages and mast cells. B and T cells generally began to appear by 8–12 weeks, and organized aggregates of lymphoid cells were often found in advanced lesions. ^ We tested the efficacy of several chemopreventive agents in this model, including celecoxib, a COX-2 selective inhibitor, pentoxifylline, a cytokine inhibitor, curcumin, a polyphenol with antioxidant and anti-inflammatory properties, and GW2974, a dual EGFR/ErbB2 inhibitor. Effects on lesion development were modest in the GW2974 and pentoxifylline treated groups, but significant prevention effects were observed with curcumin and celecoxib. ^
Resumo:
Cervical cancer is the leading cause of death and disease from malignant neoplasms among women in developing countries. Even though the Pap smear has significantly decreased the number of deaths from cervical cancer in the past years, it has its limitations. Researchers have developed an automated screening machine which can potentially detect abnormal cases that are overlooked by conventional screening. The goal of quantitative cytology is to classify the patient's tissue sample based on quantitative measurements of the individual cells. It is also much cheaper and potentially can take less time. One of the major challenges of collecting cells with a cytobrush is the possibility of not sampling any existing dysplastic cells on the cervix. Being able to correctly classify patients who have disease without the presence of dysplastic cells could improve the accuracy of quantitative cytology algorithms. Subtle morphologic changes in normal-appearing tissues adjacent to or distant from malignant tumors have been shown to exist, but a comparison of various statistical methods, including many recent advances in the statistical learning field, has not previously been done. The objective of this thesis is to use different classification methods applied to quantitative cytology data for the detection of malignancy associated changes (MACs). In this thesis, Elastic Net is the best algorithm. When we applied the Elastic Net algorithm to the test set, we combined the training set and validation set as "training" set and used 5-fold cross validation to choose the parameter for Elastic Net. It has a sensitivity of 47% at 80% specificity, an AUC 0.52, and a partial AUC 0.10 (95% CI 0.09-0.11).^
Resumo:
We have examined the effects of inactivation of the p53 tumor suppressor gene on the incidence of apoptotic cell death in two stages of the adenoma-to-carcinoma progression in the intestine: in early adenomas where p53 mutations are rare and in highly dysplastic adenomas where loss of p53 occurs frequently. Homozygosity for an inactivating germ-line mutation of p53 had no effect on the incidence or the rate of progression of ApcMin/+-induced adenomas in mice and also did not affect the frequency of apoptosis in the cells of these adenomas. To examine the effect of p53 loss on apoptosis in late-stage adenomas, we compared the incidence of apoptotic cell death before and after the appearance of highly dysplastic cells in human colonic adenomas. The appearance of highly dysplastic cells, which usually coincides during colon tumor progression with loss of heterozygosity at the p53 locus, did not correlate with a reduction in the incidence of apoptosis. These studies suggest that p53 is only one of the genes that determine the incidence of apoptotic in colon carcinomas and that wild-type p53 retards the progression of many benign colonic adenoma to malignant carcinomas by mechanism(s) other than the promotion of apoptosis.
Resumo:
This report shows that loss of heterozygosity at the mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) locus occurred in 5/8 (63%) dysplastic liver lesions and 11/18 (61%) hepatocellular carcinomas (HCCs) associated with the high risk factors of hepatitis virus infection and liver cirrhosis. Mutations in the remaining allele were detected in 6/11 (55%) HCCs, including deletions in a polydeoxyguanosine region known to be a target of microsatellite instability. M6P/IGF2R allele loss was also found in cirrhotic tissue of clonal origin adjacent to these dysplastic lesions and HCCs, demonstrating that M6P/IGF2R inactivation occurs early in liver carcinogenesis. In conclusion, HCCs frequently develop from clonal expansions of phenotypically normal, M6P/IGF2R-mutated hepatocytes, providing further support for the idea that M6P/IGF2R functions as a liver tumor-suppressor gene.
Resumo:
Fourier-transform IR (FT-IR) spectra of pelleted exfoliated cervical cells from patients with cervical cancer or dysplasia differ from those from normal women. To study the origin of these spectral changes, we obtained the FT-IR spectra of individual cervical cells from normal, dysplastic, and malignant cervical samples. Ninety five percent of normal superficial and intermediate cells displayed two distinct spectral patterns designated A and B, and 5% displayed an intermediate pattern, suggesting extensive structural heterogeneity among these cells. Parabasal and endocervical cells showed pattern B spectra. The spectra of malignant, dysplastic, and other abnormal cells also were characterized. Analysis of FT-IR spectra of over 2,000 individual cells from 10 normal females, 7 females with dysplasia, and 5 females with squamous cell carcinoma revealed that the spectra of normal-appearing intermediate and superficial cells of the cervix from women with either dysplasia or cancer differed from those of normal women. Chemometric and classical spectroscopic analysis showed a continuum of changes paralleling the transition from normalcy to malignancy. These findings suggest that (i) the structural changes underlying the spectroscopic changes are involved in or are a product of cervical carcinogenesis and (ii) the neoplastic process may be more extensive than currently recognized with morphological criteria. This approach may be useful for the structural study of neoplasia and also may be of help in the diagnosis or classification of cervical disorders.
Resumo:
One of the fundamental tenets of oncology is that tumors arise from stem cells. In the colon, stem cells are thought to reside at the base of crypts. In the early stages of tumorigenesis, however, dysplastic cells are routinely found at the luminal surface of the crypts whereas the cells at the bases of these same crypts appear morphologically normal. To understand this discrepancy, we evaluated the molecular characteristics of cells isolated from the bases and orifices of the same crypts in small colorectal adenomas. We found that the dysplastic cells at the tops of the crypts often exhibited genetic alterations of adenomatous polyposis coli (APC) and neoplasia-associated patterns of gene expression. In contrast, cells located at the base of these same crypts did not contain such alterations and were not clonally related to the contiguous transformed cells above them. These results imply that development of adenomatous polyps proceeds through a top-down mechanism. Genetically altered cells in the superficial portions of the mucosae spread laterally and downward to form new crypts that first connect to preexisting normal crypts and eventually replace them.
Resumo:
In prostanoid biosynthesis, the first two steps are catalyzed by cyclooxygenases (COX). In mice and humans, deregulated expression of COX-2, but not of COX-1, is characteristic of epithelial tumors, including squamous cell carcinomas of skin. To explore the function of COX-2 in epidermis, a keratin 5 promoter was used to direct COX-2 expression to the basal cells of interfollicular epidermis and the pilosebaceous appendage of transgenic mouse skin. COX-2 overexpression in the expected locations, resulting in increased prostaglandin levels in epidermis and plasma, correlated with a pronounced skin phenotype. Heterozygous transgenic mice exhibited a reduced hair follicle density. Moreover, postnatally hair follicle morphogenesis and thinning of interfollicular dorsal epidermis were delayed. Adult transgenics showed a body-site-dependent sparse coat of greasy hair, the latter caused by sebaceous gland hyperplasia and increased epicutaneous sebum levels. In tail skin, hyperplasia of scale epidermis reflecting an increased number of viable and cornified cell layers was observed. Hyperplasia was a result of a disturbed program of epidermal differentiation rather than an increased proliferation rate, as reflected by the strong suppression of keratin 10, involucrin, and loricrin expression in suprabasal cells. Further pathological signs were loss of cell polarity, mainly of basal keratinocytes, epidermal invaginations into the dermis, and formation of horn perls. Invaginating hyperplastic lobes were surrounded by CD31-positive vessels. These results demonstrate a causal relationship between transgenic COX-2 expression in basal keratinocytes and epidermal hyperplasia as well as dysplastic features at discrete body sites.
Resumo:
We have chosen tumors of the uterine cervix as a model system to identify chromosomal aberrations that occur during carcinogenesis. A phenotype/genotype correlation was established in defined regions of archived, formalin-fixed, and hematoxylin/eosin-stained tissue sections that were dissected from normal cervical epithelium (n = 3), from mild (n = 4), moderate (n = 6), and severe dysplasias/carcinomas in situ (CIS) (n = 13), and from invasive carcinomas (n = 10) and investigated by comparative genomic hybridization. The same tissues were analyzed for DNA ploidy, proliferative activity, and the presence of human papillomavirus (HPV) sequences. The results show that an increase in proliferative activity and tetraploidization had occurred already in mildly dysplastic lesions. No recurrent chromosomal aberrations were observed in DNA extracted from normal epithelium or from mild and moderate dysplasias, indicating that the tetraploidization precedes the loss or gain of specific chromosomes. A gain of chromosome 3q became visible in one of the severe dysplasias/CIS. Notably, chromosome 3q was overrepresented in 90% of the carcinomas and was also found to have undergone a high-level copy-number increase (amplification). We therefore conclude that the gain of chromosome 3q that occurs in HPV16-infected, aneuploid cells represents a pivotal genetic aberration at the transition from severe dysplasia/CIS to invasive cervical carcinoma.