871 resultados para Dynamic Model Averaging
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. This has motivated many initiatives that have been developing scientific workflow tools. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from workflow tasks specification, decentralizing the control of workflow activities, and allowing their tasks to run autonomous in distributed infrastructures, for instance on Clouds. Furthermore many workflow tools only support the execution of Direct Acyclic Graphs (DAG) without the concept of iterations, where activities are executed millions of iterations during long periods of time and supporting dynamic workflow reconfigurations after certain iteration. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on the Process Networks model, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures, e. g. on Clouds. Each AWA executes a Task developed as a Java class that implements a generic interface allowing end-users to code their applications without concerns for low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables support to dynamic workflow reconfiguration and monitoring of the execution of workflows. We describe how AWARD supports dynamic reconfiguration and discuss typical workflow reconfiguration scenarios. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to a small dedicated cluster and the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.
Resumo:
A fuzzy linguistic controller has been developed and implemented with the aim to cope with interactions between control loops due to coupling effects. To access the performance of the proposed approach several experiments have also been conducted using the classical PID controllers in the control loops. A mixing process has been used as test bed of all controllers experimented and the corresponding dynamic model has been derived. The successful results achieved with the fuzzy linguistic controllers suggests that they can be an alternative to classical controllers when in the presence of process plants where automatic control as to cope with coupling effects between control loops. © 2014 IEEE.
Resumo:
The control of a crane carrying its payload by an elastic string corresponds to a task in which precise, indirect control of a subsystem dynamically coupled to a directly controllable subsystem is needed. This task is interesting since the coupled degree of freedom has little damping and it is apt to keep swinging accordingly. The traditional approaches apply the input shaping technology to assist the human operator responsible for the manipulation task. In the present paper a novel adaptive approach applying fixed point transformations based iterations having local basin of attraction is proposed to simultaneously tackle the problems originating from the imprecise dynamic model available for the system to be controlled and the swinging problem, too. The most important phenomenological properties of this approach are also discussed. The control considers the 4th time-derivative of the trajectory of the payload. The operation of the proposed control is illustrated via simulation results.
Resumo:
A robot’s drive has to exert appropriate driving forces that can keep its arm and end effector at the proper position, velocity and acceleration, and simultaneously has to compensate for the effects of the contact forces arising between the tool and the workpiece depending on the needs of the actual technological operation. Balancing the effects of a priori unknown external disturbance forces and the inaccuracies of the available dynamic model of the robot is also important. Technological tasks requiring well prescribed end effector trajectories and contact forces simultaneously are challenging control problems that can be tackled in various manners.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from tasks specification, decentralizing the control of workflow activities allowing their tasks to run in distributed infrastructures, and supporting dynamic workflow reconfigurations. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on Process Networks, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures. Each AWA executes a task developed as a Java class with a generic interface allowing end-users to code their applications without low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables dynamic workflow reconfiguration. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to the Amazon (Elastic Computing EC2) Cloud.
Resumo:
Este artigo tem por objectivo averiguar se uma redução nos impostos sobre o trabalho, capital e consumo poderão afectar permanentemente o crescimento económico, validando o paradigma do crescimento endógeno ou, se pelo contrário, afectam apenas o nível de output (teoria do crescimento exógeno). Recorrendo às taxas efectivas de impostos sobre as funções económicas estimadas por Martinez-Mongay (2000) e à estimação de modelos dinâmicos de séries temporais, que permitem estudar os efeitos de curto e de longo prazo, os resultados obtidos para 14 Estados-Membros da União Europeia dos 15, no período 1970-2000, sugerem a validação do paradigma de crescimento endógeno. Em particular, a redução dos impostos sobre o trabalho e o capital poderia estimular o crescimento económico de longo prazo.
Resumo:
An adaptive control damping the forced vibration of a car while passing along a bumpy road is investigated. It is based on a simple kinematic description of the desired behavior of the damped system. A modified PID controller containing an approximation of Caputo’s fractional derivative suppresses the high-frequency components related to the bumps and dips, while the low frequency part of passing hills/valleys are strictly traced. Neither a complete dynamic model of the car nor ’a priori’ information on the surface of the road is needed. The adaptive control realizes this kinematic design in spite of the existence of dynamically coupled, excitable internal degrees of freedom. The method is investigated via Scicos-based simulation in the case of a paradigm. It was found that both adaptivity and fractional order derivatives are essential parts of the control that can keep the vibration of the load at bay without directly controlling its motion.
Resumo:
5th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines
Resumo:
Dynamic model, tubular reactor, polyethylene, LDPE, discretization, simulation, sensitivity analysis, nonlinear analysis
Resumo:
Report for the scientific sojourn at the Simon Fraser University, Canada, from July to September 2007. General context: landscape change during the last years is having significant impacts on biodiversity in many Mediterranean areas. Land abandonment, urbanisation and specially fire are profoundly transforming large areas in the Western Mediterranean basin and we know little on how these changes influence species distribution and in particular how these species will respond to further change in a context of global change including climate. General objectives: integrate landscape and population dynamics models in a platform allowing capturing species distribution responses to landscape changes and assessing impact on species distribution of different scenarios of further change. Specific objective 1: develop a landscape dynamic model capturing fire and forest succession dynamics in Catalonia and linked to a stochastic landscape occupancy (SLOM) (or spatially explicit population, SEPM) model for the Ortolan bunting, a species strongly linked to fire related habitat in the region. Predictions from the occupancy or spatially explicit population Ortolan bunting model (SEPM) should be evaluated using data from the DINDIS database. This database tracks bird colonisation of recently burnt big areas (&50 ha). Through a number of different SEPM scenarios with different values for a number of parameter, we should be able to assess different hypothesis in factors driving bird colonisation in new burnt patches. These factors to be mainly, landscape context (i.e. difficulty to reach the patch, and potential presence of coloniser sources), dispersal constraints, type of regenerating vegetation after fire, and species characteristics (niche breadth, etc).
Resumo:
This paper develops stochastic search variable selection (SSVS) for zero-inflated count models which are commonly used in health economics. This allows for either model averaging or model selection in situations with many potential regressors. The proposed techniques are applied to a data set from Germany considering the demand for health care. A package for the free statistical software environment R is provided.
Disentangling the effects of key innovations on the diversification of Bromelioideae (bromeliaceae).
Resumo:
The evolution of key innovations, novel traits that promote diversification, is often seen as major driver for the unequal distribution of species richness within the tree of life. In this study, we aim to determine the factors underlying the extraordinary radiation of the subfamily Bromelioideae, one of the most diverse clades among the neotropical plant family Bromeliaceae. Based on an extended molecular phylogenetic data set, we examine the effect of two putative key innovations, that is, the Crassulacean acid metabolism (CAM) and the water-impounding tank, on speciation and extinction rates. To this aim, we develop a novel Bayesian implementation of the phylogenetic comparative method, binary state speciation and extinction, which enables hypotheses testing by Bayes factors and accommodates the uncertainty on model selection by Bayesian model averaging. Both CAM and tank habit were found to correlate with increased net diversification, thus fulfilling the criteria for key innovations. Our analyses further revealed that CAM photosynthesis is correlated with a twofold increase in speciation rate, whereas the evolution of the tank had primarily an effect on extinction rates that were found five times lower in tank-forming lineages compared to tank-less clades. These differences are discussed in the light of biogeography, ecology, and past climate change.
Resumo:
We develop methods for Bayesian inference in vector error correction models which are subject to a variety of switches in regime (e.g. Markov switches in regime or structural breaks). An important aspect of our approach is that we allow both the cointegrating vectors and the number of cointegrating relationships to change when the regime changes. We show how Bayesian model averaging or model selection methods can be used to deal with the high-dimensional model space that results. Our methods are used in an empirical study of the Fisher effect.
Resumo:
We develop methods for Bayesian inference in vector error correction models which are subject to a variety of switches in regime (e.g. Markov switches in regime or structural breaks). An important aspect of our approach is that we allow both the cointegrating vectors and the number of cointegrating relationships to change when the regime changes. We show how Bayesian model averaging or model selection methods can be used to deal with the high-dimensional model space that results. Our methods are used in an empirical study of the Fisher e ffect.