949 resultados para Drug development


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS)​, a surface glyconconjugate unique to Gram-​neg. bacteria consisting of lipid A (lipid anchor of the mol.)​, core oligosaccharide and O-​specific polysaccharide (O antigen)​, are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-​polysaccharides, a total of 97 O-​serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60​% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-​deoxy-​d-​manno-​oct-​2-​ulosonic (ketodeoxyoctonic) acid (Kdo) and l-​glycero-​d-​manno-​Heptoses (l,​d-​Hep)​, which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida)​, d,​d-​Hep (in Aeromonas salmonicida)​, and l,​d-​Hep (in Aeromonas hydrophila)​. The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-​, penta- and hexa-​acylated lipid A species and comprising of 4'-​monophosphorylated β-​2-​amino-​2-​deoxy-​d-​glucopyranose-​(1→6)​-​2-​amino-​2-​deoxy-​d-​glucopyranose disaccharide. In the present review, we discuss the structure-​activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Marine microorganisms, including Aeromonas, are a source of compds. for drug development that have generated great expectations in the last decades. Aeromonas infections produce septicemia, and ulcerative and haemorrhagic diseases in fish. Among the pathogenic factors assocd. with Aeromonas, the lipopolysaccharides (LPS)​, a surface glyconconjugate unique to Gram-​neg. bacteria consisting of lipid A (lipid anchor of the mol.)​, core oligosaccharide and O-​specific polysaccharide (O antigen)​, are key elicitors of innate immune responses. The chem. structure of these three parts has been characterized in Aeromonas. Based on the high variability of repeated units of O-​polysaccharides, a total of 97 O-​serogroups have been described in Aeromonas species, of which four of them (O:11; O:16; O:18 and O:34) account for more than 60​% of the septicemia cases. The core of LPS is subdivided into two regions, the inner (highly conserved) and the outer core. The inner core of Aeromonas LPS is characterized by the presence of 3-​deoxy-​d-​manno-​oct-​2-​ulosonic (ketodeoxyoctonic) acid (Kdo) and l-​glycero-​d-​manno-​Heptoses (l,​d-​Hep)​, which are linked to the outer core, characterized by the presence of Glc, GlcN, Gal, and GalNAc (in Aeromonas salmonicida)​, d,​d-​Hep (in Aeromonas salmonicida)​, and l,​d-​Hep (in Aeromonas hydrophila)​. The biol. relevance of these differences in the distal part of the outer core among these species has not been fully assessed to date. The inner core is attached to the lipid A, a highly conserved structure that confers endotoxic properties to the LPS when the mol. is released in blood from lysed bacteria, thus inducing a major systemic inflammatory response known as septic or endotoxic shock. In Aeromonas salmonicida subsp. salmonicida the Lipid A components contain three major lipid A mols., differing in acylation patterns corresponding to tetra-​, penta- and hexa-​acylated lipid A species and comprising of 4'-​monophosphorylated β-​2-​amino-​2-​deoxy-​d-​glucopyranose-​(1→6)​-​2-​amino-​2-​deoxy-​d-​glucopyranose disaccharide. In the present review, we discuss the structure-​activity relationships of Aeromonas LPS, focusing on its role in bacterial pathogenesis and its possible applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen component of Ayahuasca, an Amazonian beverage traditionally used for ritual, religious and healing purposes that is being increasingly used for recreational purposes in US and Europe. 5MeO-DMT is of potential interest for schizophrenia research owing to its hallucinogenic properties. Two other psychotomimetic agents, phencyclidine and 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), markedly disrupt neuronal activity and reduce the power of low frequency cortical oscillations (<4 Hz, LFCO) in rodent medial prefrontal cortex (mPFC). Here we examined the effect of 5-MeO-DMT on cortical function and its potential reversal by antipsychotic drugs. Moreover, regional brain activity was assessed by blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). 5-MeO-DMT disrupted mPFC activity, increasing and decreasing the discharge of 51 and 35% of the recorded pyramidal neurons, and reducing (−31%) the power of LFCO. The latter effect depended on 5-HT1A and 5-HT2A receptor activation and was reversed by haloperidol, clozapine, risperidone, and the mGlu2/3 agonist LY379268. Likewise, 5-MeO-DMT decreased BOLD responses in visual cortex (V1) and mPFC. The disruption of cortical activity induced by 5-MeO-DMT resembles that produced by phencyclidine and DOI. This, together with the reversal by antipsychotic drugs, suggests that the observed cortical alterations are related to the psychotomimetic action of 5-MeO-DMT. Overall, the present model may help to understand the neurobiological basis of hallucinations and to identify new targets in antipsychotic drug development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The implementation of the subject Pharmacology and Toxicology in R+D+i in the Pharmacy Degree, has led to the launch of a new methodological approach and teaching performance with the aim of developing the generic skills of the University of Barcelona (e.g., self-learning, team-working). An additional objective was students' integration of knowledge from different subjects in the degree which form the basis of the preclinical and clinical development of a drug. For this purpose, the teaching strategy used in the development of the subject was based on: 1) re-developing the content that students had been taught previously or were being taught in the same semester as a part of other subjects, and framing them in the environment of the pharmaceutical industry, 2) introducing new and previously unseen contents to do with drug development and toxicology, 3) developing a battery of activities to be undertaken by teams of students relating to the R+D+i of a particular drug. During the development of these activities, students have to acquire generic skills in addition to the subject-specific skills. The results obtained from the student survey give us grounds for satisfaction and allow us to consider that we have reached the goal of improving students' learning in Pharmacology and Toxicology applied to drug development in the pharmaceutical world today.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neglected diseases are a major global cause of illness, long-term disability and death. Chagas' disease is a parasitic infection widely distributed throughout Latin America, with devastating consequences in terms of human morbidity and mortality. The existing drug therapy suffers from a combination of drawbacks including poor efficacy, resistance and serious side effects. In 2009, we celebrate the 100th anniversary of the discovery of Chagas' disease, facing the challenges of developing new, safe and effective drugs for the treatment of this disease. This brief review attempts to highlight the state of the art, limitations and perspectives of Chagas' disease drug development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cardiovascular diseases are responsible for the largest number of deaths among humans worldwide, including heart attacks, strokes, and thrombosis. The treatment of thrombosis is generally through the administration of anticoagulant and/or antiplatelet drugs, which have some clinical limitations. Plants synthesize a wide variety of bioactive metabolites in response to different stimuli. This review focuses on a number of molecules of vegetal origin belonging to different chemical classes, with significant anticoagulant and antiplatelet effects. Their promising antithrombotic profile confirms the potential of natural products as a source of lead molecules for drug development in the prevention and treatment of thrombosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integrins are heterodimeric, signaling transmembrane adhesion receptors that connect the intracellular actin microfilaments to the extracellular matrix composed of collagens and other matrix molecules. Bidirectional signaling is mediated via drastic conformational changes in integrins. These changes also occur in the integrin αI domains, which are responsible for ligand binding by collagen receptor and leukocyte specific integrins. Like intact integrins, soluble αI domains exist in the closed, low affinity form and in the open, high affinity form, and so it is possible to use isolated αI domains to study the factors and mechanisms involved in integrin activation/deactivation. Integrins are found in all mammalian tissues and cells, where they play crucial roles in growth, migration, defense mechanisms and apoptosis. Integrins are involved in many human diseases, such as inflammatory, cardiovascular and metastatic diseases, and so plenty of effort has been invested into developing integrin specific drugs. Humans have 24 different integrins, four of which are collagen receptor (α1β1, α2β1, α10β1, α11β1) and five leukocyte specific integrins (αLβ2, αMβ2, αXβ2, αDβ2, αEβ7). These two integrin groups are quite unselective having both primary and secondary ligands. This work presents the first systematic studies performed on these integrin groups to find out how integrin activation affects ligand binding and selectivity. These kinds of studies are important not only for understanding the partially overlapping functions of integrins, but also for drug development. In general, our results indicated that selectivity in ligand recognition is greatly reduced upon integrin activation. Interestingly, in some cases the ligand binding properties of integrins have been shown to be cell type specific. The reason for this is not known, but our observations suggest that cell types with a higher integrin activation state have lower ligand selectivity, and vice versa. Furthermore, we solved the three-dimensional structure for the activated form of the collagen receptor α1I domain. This structure revealed a novel intermediate conformation not previously seen with any other integrin αI domain. This is the first 3D structure for an activated collagen receptor αI domain without ligand. Based on the differences between the open and closed conformation of the αI domain we set structural criteria for a search for effective collagen receptor drugs. By docking a large number of molecules into the closed conformation of the α2I domain we discovered two polyketides, which best fulfilled the set structural criteria, and by cell adhesion studies we showed them to be specific inhibitors of the collagen receptor integrins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human immune system is constantly interacting with the surrounding stimuli and microorganisms. However, when directed against self or harmless antigens, these vital defense mechanisms can cause great damage. In addition, the understanding the underlying mechanism of several human diseases caused by aberrant immune cell functions, for instance type 1 diabetes and allergies, remains far from being complete. In this Ph.D. study these questions were addressed using genome-wide transcriptomic analyses. Asthma and allergies are characterized by a hyperactive response of the T helper 2 (Th2) immune cells. In this study, the target genes of the STAT6 transcription factor in naïve human T cells were identified with RNAi for the first time. STAT6 was shown to act as a central activator of the genes expression upon IL-4 signaling, with both direct and indirect effects on Th2 cell transcriptome. The core transcription factor network induced by IL-4 was identified from a kinetic analysis of the transcriptome. Type 1 diabetes is an autoimmune disease influenced by both the genetic susceptibility of an individual and the disease-triggering environmental factors. To improve understanding of the autoimmune processes driving pathogenesis in the prediabetic phase in humans, a unique series of prospective whole-blood RNA samples collected from HLA-susceptible children in the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study was studied. Changes in different timewindows of the pathogenesis process were identified, and especially the type 1 interferon response was activated early and throughout the preclinical T1D. The hygiene hypothesis states that allergic diseases, and lately also autoimmune diseases, could be prevented by infections and other microbial contacts acquired in early childhood, or even prenatally. To study the effects of the standard of hygiene on the development of neonatal immune system, cord blood samples from children born in Finland (high standard of living), Estonia (rapid economic growth) and Russian Karelia (low standard of living) were compared. Children born in Russian Karelia deviated from Finnish and Estonian children in many aspects of the neonatal immune system, which was developmentally more mature in Karelia, resembling that of older infants. The results of this thesis offer significant new information on the regulatory networks associated with immune-mediated diseases in human. The results will facilitate understanding and further research on the role of the identified target genes and mechanisms driving the allergic inflammation and type 1 diabetes, hopefully leading to a new era of drug development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vitamins are essential compounds mainly involved in acting as enzyme co-factors or in response to oxidative stress. In the last two years it became apparent that apicomplexan parasites are able to generate B vitamers such as vitamin B1 and B6 de novo. The biosynthesis pathways responsible for vitamin generation are considered as drug targets, since both provide a high degree of selectivity due to their absence in the human host. This report updates the current knowledge about vitamin B1 and B6 biosynthesis in malaria and other apicomplexan parasites. Owing to the urgent need for novel antimalarials, the significance of the biosynthesis and salvage of these vitamins is critically discussed in terms of parasite survival and their exploitation for drug development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hippocampal output is increased in affective disorders and is mediated by increased glutamatergic input via N-methyl-D-aspartate (NMDA) receptor and moderated by antidepressant treatment. Activation of NMDA receptors by glutamate evokes the release of nitric oxide (NO) by the activation of neuronal nitric oxide synthase (nNOS). The human hippocampus contains a high density of NMDA receptors and nNOS-expressing neurons suggesting the existence of an NMDA-NO transduction pathway which can be involved in the pathogenesis of affective disorders. We tested the hypothesis that nNOS expression is increased in the human hippocampus from affectively ill patients. Immunocytochemistry was used to demonstrate nNOS-expressing neurons in sections obtained from the Stanley Consortium postmortem brain collection from patients with major depression (MD, N = 15), bipolar disorder (BD, N = 15), and schizophrenia (N = 15) and from controls (N = 15). nNOS-immunoreactive (nNOS-IR) and Nissl-stained neurons were counted in entorhinal cortex, hippocampal CA1, CA2, CA3, and CA4 subfields, and subiculum. The numbers of Nissl-stained neurons were very similar in different diagnostic groups and correlated significantly with the number of nNOS-IR neurons. Both the MD and the BD groups had greater number of nNOS-IR neurons/400 µm² in CA1 (mean ± SEM: MD = 9.2 ± 0.6 and BD = 8.4 ± 0.6) and subiculum (BD = 6.7 ± 0.4) when compared to control group (6.6 ± 0.5) and this was significantly more marked in samples from the right hemisphere. These changes were specific to affective disorders since no changes were seen in the schizophrenic group (6.7 ± 0.8). The results support the current view of the NMDA-NO pathway as a target for the pathophysiology of affective disorders and antidepressant drug development.