851 resultados para Distributed agent system


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objectivo da tese é demonstrar a adequação do paradigma dos mercados electrónicos baseados em agentes para transaccionar objectos multimédia em função do perfil dos espectadores. Esta dissertação descreve o projecto realizado no âmbito da plataforma de personalização de conteúdos em construção. O domínio de aplicação adoptado foi a personalização dos intervalos publicitários difundidos pelos distribuidores de conteúdos multimédia, i.e., pretende-se gerar em tempo útil o alinhamento de anúncios publicitários que melhor se adeqúe ao perfil de um espectador ou de um grupo de espectadores. O projecto focou-se no estudo e selecção das tecnologias de suporte, na concepção da arquitectura e no desenvolvimento de um protótipo que permitisse realizar diversas experiências nomeadamente com diferentes estratégias e tipos de mercado. A arquitectura proposta para a plataforma consiste num sistema multiagente organizado em três camadas que disponibiliza interfaces do tipo serviço Web com o exterior. A camada de topo é constituída por agentes de interface com o exterior. Na camada intermédia encontram-se os agentes autónomos que modelam as entidades produtoras e consumidoras de componentes multimédia assim como a entidade reguladora do mercado. Estes agentes registam-se num serviço de registo próprio onde especificam os componentes multimédia que pretendem negociar. Na camada inferior realiza-se o mercado que é constituído por agentes delegados dos agentes da camada superior. O lançamento do mercado é efectuado através de uma interface e consiste na escolha do tipo de mercado e no tipo de itens a negociar. Este projecto centrou-se na realização da camada do mercado e da parte da camada intermédia de apoio às actividades de negociação no mercado. A negociação é efectuada em relação ao preço da transmissão do anúncio no intervalo em preenchimento. Foram implementados diferentes perfis de negociação com tácticas, incrementos e limites de variação de preço distintos. Em termos de protocolos de negociação, adoptou-se uma variante do Iterated Contract Net – o Fixed Iterated Contract Net. O protótipo resultante foi testado e depurado com sucesso.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One important step in the design of air stripping operations for the removal of VOC is the choice of operating conditions, which are based in the phase ratio. This parameter sets on directly the stripping factor and the efficiency of the operation. Its value has an upper limit determined by the flooding regime, which is previewed using empirical correlations, namely the one developed by Eckert. This type of approach is not suitable for the development of algorithms. Using a pilot scale column and a convenient solution, the pressure drop was determined in different operating conditions and the experimental values were compared with the estimations. This particular research will be incorporated in a global model for simulating the dynamics of air stripping using a multi variable distributed parameter system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The provision of reserves in power systems is of great importance in what concerns keeping an adequate and acceptable level of security and reliability. This need for reserves and the way they are defined and dispatched gain increasing importance in the present and future context of smart grids and electricity markets due to their inherent competitive environment. This paper concerns a methodology proposed by the authors, which aims to jointly and optimally dispatch both generation and demand response resources to provide the amounts of reserve required for the system operation. Virtual Power Players are especially important for the aggregation of small size demand response and generation resources. The proposed methodology has been implemented in MASCEM, a multi agent system also developed at the authors’ research center for the simulation of electricity markets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Worldwide electricity markets have been evolving into regional and even continental scales. The aim at an efficient use of renewable based generation in places where it exceeds the local needs is one of the main reasons. A reference case of this evolution is the European Electricity Market, where countries are connected, and several regional markets were created, each one grouping several countries, and supporting transactions of huge amounts of electrical energy. The continuous transformations electricity markets have been experiencing over the years create the need to use simulation platforms to support operators, regulators, and involved players for understanding and dealing with this complex environment. This paper focuses on demonstrating the advantage that real electricity markets data has for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations will bring to the participant countries. A case study using MASCEM (Multi-Agent System for Competitive Electricity Markets) is presented, with a scenario based on real data, simulating the European Electricity Market environment, and comparing its performance when using several different market mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a decision support methodology for electricity market players’ bilateral contract negotiations. The proposed model is based on the application of game theory, using artificial intelligence to enhance decision support method’s adaptive features. This model is integrated in AiD-EM (Adaptive Decision Support for Electricity Markets Negotiations), a multi-agent system that provides electricity market players with strategic behavior capabilities to improve their outcomes from energy contracts’ negotiations. Although a diversity of tools that enable the study and simulation of electricity markets has emerged during the past few years, these are mostly directed to the analysis of market models and power systems’ technical constraints, making them suitable tools to support decisions of market operators and regulators. However, the equally important support of market negotiating players’ decisions is being highly neglected. The proposed model contributes to overcome the existing gap concerning effective and realistic decision support for electricity market negotiating entities. The proposed method is validated by realistic electricity market simulations using real data from the Iberian market operator—MIBEL. Results show that the proposed adaptive decision support features enable electricity market players to improve their outcomes from bilateral contracts’ negotiations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation to obtain the Master degree in Electrical Engineering and Computer Science