954 resultados para Direct Current Machine Control
Resumo:
Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily characterized by motor symptoms such as tremor, rigidity, bradykinesia, stiffness, slowness and impaired equilibrium. Although the motor symptoms have been the focus in PD, slight cognitive deficits are commonly found in non-demented and non-depressed PD patients, even in early stages of the disease, which have been linked to the subsequent development of pathological dementia. Thus, strongly reducing the quality of life (QoL). Both levodopa therapy and deep brain stimulation (DBS) have yield controversial results concerning the cognitive symptoms amelioration in PD patients. That does not seems to be the case with transcranial direct current stimulation (tDCS), although better stimulation parameters are needed. Therefore we hypothesize that simultaneously delivering cathodal tDCS (or ctDCS), over the right prefrontal cortex delivered with anodal tDCS (or atDCS) to left prefrontal cortex could be potentially beneficial for PD patients, either by mechanisms of homeostatic plasticity and by increases in the extracellular dopamine levels over the striatum.
Resumo:
The dorsolateral prefrontal cortex (DLPFC) is involved in the cognitive appraisal and modulation of the pain experience. In this sham-controlled study, with healthy volunteers, we used bi-hemispheric transcranial direct current stimulation (tDCS) over the DLPFC to assess emotional reactions elicited by pain observation. Left-cathodal/right-anodal tDCS decreased valence and arousal evaluations compared to other tDCS conditions. Compared to sham condition, both left-cathodal/right-anodal and left-anodal/right-cathodal tDCS decreased hostility, sadness and self-pain perception. These decreased sensations after both active tDCS suggest a common role for left and right DLPFC in personal distress modulation. However, the differences in arousal and valence evaluations point to distinct roles of lateralized DLPFC in cognitive empathy, probably through distinct emotion regulation mechanisms.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e de Computadores
Resumo:
A new electrical method is proposed for determining the apparent resistivity of multi-earth layers located underwater. The method is based on direct current geoelectric sounding principles. A layered earth model is used to simulate the stratigraphic target. The measurement array is of pole-pole type; it is located underwater and is orientated vertically. This particular electrode configuration is very useful when conventional electrical methods cannot be used, especially if the water depth becomes very important. The calculated apparent resistivity shows a substantial quality increase in the measured signal caused by the underwater targets, from which little or no response is measured using conventional surface electrode methods. In practice, however, different factors such as water stratification, underwater streams or meteorological conditions complicate the interpretation of the field results. A case study is presented, where field surveys carried out on Lake Geneva were interpreted using the calculated apparent resistivity master-curves.
Resumo:
Bacteria can survive on hospital textiles and surfaces, from which they can be disseminated, representing a source of health care-associated infections (HCAIs). Surfaces containing copper (Cu), which is known for its bactericidal properties, could be an efficient way to lower the burden of potential pathogens. The antimicrobial activity of Cu-sputtered polyester surfaces, obtained by direct-current magnetron sputtering (DCMS), against methicillin-resistant Staphylococcus aureus (MRSA) was tested. The Cu-polyester microstructure was characterized by high-resolution transmission electron microscopy to determine the microstructure of the Cu nanoparticles and by profilometry to assess the thickness of the layers. Sputtering at 300 mA for 160 s led to a Cu film thickness of 20 nm (100 Cu layers) containing 0.209% (wt/wt) polyester. The viability of MRSA strain ATCC 43300 on Cu-sputtered polyester was evaluated by four methods: (i) mechanical detachment, (ii) microcalorimetry, (iii) direct transfer onto plates, and (iv) stereomicroscopy. The low efficacy of mechanical detachment impeded bacterial viability estimations. Microcalorimetry provided only semiquantitative results. Direct transfer onto plates and stereomicroscopy seemed to be the most suitable methods to evaluate the bacterial inactivation potential of Cu-sputtered polyester surfaces, since they presented the least experimental bias. Cu-polyester samples sputtered for 160 s by DCMS were further tested against 10 clinical MRSA isolates and showed a high level of bactericidal activity, with a 4-log(10) reduction in the initial MRSA load (10(6) CFU) within 1 h. Cu-sputtered polyester surfaces might be of use to prevent the transmission of HCAI pathogens.
Resumo:
The aim of this work is to describe the techniques that have been used for preparation and analysis of whole fetal liver extracts destined for in utero transplantation. Nine fetal livers between 12 and 17 weeks of gestation were prepared: cell counts and assessment of the hematopoietic cell viability were performed on cell suspensions. Hepatocytes represented 40 to 80% of the whole cell population. The remaining cells were constituted by hematopoietic cells (mainly erythroblasts), as well as by endothelial cells. The latter expressed CD34 on their surface, interfering with the assessment of CD34+ hematopoietic cells by flow cytometry. Direct visual morphologic control using alkaline phosphatase anti-alkaline phosphatase techniques was needed to differentiate hematopoietic from extra-hematopoietic CD34+ cells. Between 3.0 and 34.6 x 10(6) CD34+ viable hematopoietic cells were collected per fetal liver. Adequate differentiation of these cells into burst-forming units erythroid (BFU-E), colony-forming units granulocyte-macrophage (CFU-GM), and colony-forming units granulocyte erythroid macrophage megakaryocyte (CFU-GEMM) has been shown for each sample in clonogeneic cultures. In conclusion, fetal liver is a potential source of hematopoietic stem cells. Their numeration, based on the presence of CD34, is hampered by the expression of this antigen on other cells contained in the liver cell extract, in particular endothelial cells.
Resumo:
The prevention movement has been the key agent involved in smoking control policies. This study describes the context and the process in which Law 28/2005 was passed in Spain with a synthesis of its substance. It provides the background of the events leading up to Spain's current smoking control law in addition to an analysis of the role played by the different social actors in the process and the arguments and strategies employed in opposition by the tobacco industry. A review is also provided of the political agents, highlighting that decentralized countries have further problems in enforcing regulations. This case offers lessons for the future.
Resumo:
Current schistosomiasis control strategies are largely based on chemotherapeutic agents and a limited number of drugs are available today. Praziquantel (PZQ) is the only drug currently used in schistosomiasis control programs. Unfortunately, this drug shows poor efficacy in patients during the earliest infection phases. The effects of PZQ appear to operate on the voltage-operated Ca2+channels, which are located on the external Schistosoma mansoni membrane. Because some Ca2+channels have dihydropyridine drug class (a class that includes nifedipine) sensitivity, an in vitro analysis using a calcium channel antagonist (clinically used for cardiovascular hypertension) was performed to determine the antischistosomal effects of nifedipine on schistosomula and adult worm cultures. Nifedipine demonstrated antischistosomal activity against schistosomula and significantly reduced viability at all of the concentrations used alone or in combination with PZQ. In contrast, PZQ did not show significant efficacy when used alone. Adult worms were also affected by nifedipine after a 24 h incubation and exhibited impaired motility, several lesions on the tegument and intense contractility. These data support the idea of Ca2+channels subunits as drug targets and favour alternative therapeutic schemes when drug resistance has been reported. In this paper, strong arguments encouraging drug research are presented, with a focus on exploring schistosomal Ca2+channels.
Resumo:
Two different theories of migraine aura exist: In the vascular theory of Wolff, intracerebral vasoconstriction causes migraine aura via energy deficiency, whereas in the neuronal theory of Leão and Morison, spreading depression (SD) initiates the aura. Recently, it has been shown that the cerebrovascular constrictor endothelin-1 (ET-1) elicits SD when applied to the cortical surface, a finding that could provide a bridge between the vascular and the neuronal theories of migraine aura. Several arguments support the notion that ET-1-induced SD results from local vasoconstriction, but definite proof is missing. If ET-1 induces SD via vasoconstriction/ischemia, then neuronal damage is likely to occur, contrasting with the fact that SD in the otherwise normal cortex is not associated with any lesion. To test this hypothesis, we have performed a comprehensive histologic study of the effects of ET-1 when applied topically to the cerebral cortex of halothane-anesthetized rats. Our assessment included histologic stainings and immunohistochemistry for glial fibrillary acidic protein, heat shock protein 70, and transferase dUTP nick-end labeling assay. During ET-1 application, we recorded (i) subarachnoid direct current (DC) electroencephalogram, (ii) local cerebral blood flow by laser-Doppler flowmetry, and (iii) changes of oxyhemoglobin and deoxyhemoglobin by spectroscopy. At an ET-1 concentration of 1 muM, at which only 6 of 12 animals generated SD, a microarea with selective neuronal death was found only in those animals demonstrating SD. In another five selected animals, which had not shown SD in response to ET-1, SD was triggered at a second cranial window by KCl and propagated from there to the window exposed to ET-1. This treatment also resulted in a microarea of neuronal damage. In contrast, SD invading from outside did not induce neuronal damage in the absence of ET-1 (n = 4) or in the presence of ET-1 if ET-1 was coapplied with BQ-123, an ET(A) receptor antagonist (n = 4). In conclusion, SD in presence of ET-1 induced a microarea of selective neuronal necrosis no matter where the SD originated. This effect of ET-1 appears to be mediated by the ET(A) receptor.
Resumo:
High quantum efficiency erbium doped silicon nanocluster (Si-NC:Er) light emitting diodes (LEDs) were grown by low-pressure chemical vapor deposition (LPCVD) in a complementary metal-oxide-semiconductor (CMOS) line. Erbium (Er) excitation mechanisms under direct current (DC) and bipolar pulsed electrical injection were studied in a broad range of excitation voltages and frequencies. Under DC excitation, Fowler-Nordheim tunneling of electrons is mediated by Er-related trap states and electroluminescence originates from impact excitation of Er ions. When the bipolar pulsed electrical injection is used, the electron transport and Er excitation mechanism change. Sequential injection of electrons and holes into silicon nanoclusters takes place and nonradiative energy transfer to Er ions is observed. This mechanism occurs in a range of lower driving voltages than those observed in DC and injection frequencies higher than the Er emission rate.
Resumo:
We present a electroluminescence (EL) study of the Si-rich silicon oxide (SRSO) LEDs with and without Er3+ ions under different polarization schemes: direct current (DC) and pulsed voltage (PV). The power efficiency of the devices and their main optical limitations are presented. We show that under PV polarization scheme, the devices achieve one order of magnitude superior performance in comparison with DC. Time-resolved measurements have shown that this enhancement is met only for active layers in which annealing temperature is high enough (>1000 ◦C) for silicon nanocrystal (Si-nc) formation. Modeling of the system with rate equations has been done and excitation cross-sections for both Si-nc and Er3+ ions have been extracted.
Resumo:
Bridge deck deterioration due to corrosive effect of deicers on reinforcing steel is a major problem facing many agencies. Cathodic protection is one method used to prevent reinforcing steel corrosion. The application of a direct current to the embedded reinforcing steel and a sacrificial anode protects the steel from corrosion. This 1992 project involved placing an Elgard Titanium Anode Mesh Cathodic Protection System on a bridge deck. The anode was fastened to the deck after the Class A repair-work and the overlay was placed using the Iowa Low Slump Dense Concrete System. The system was set up initially at 1 mA/sq ft.
Resumo:
Plants propagate electrical signals in response to artificial wounding. However, little is known about the electrophysiological responses of the phloem to wounding, and whether natural damaging stimuli induce propagating electrical signals in this tissue. Here, we used living aphids and the direct current (DC) version of the electrical penetration graph (EPG) to detect changes in the membrane potential of Arabidopsis sieve elements (SEs) during caterpillar wounding. Feeding wounds in the lamina induced fast depolarization waves in the affected leaf, rising to maximum amplitude (c. 60 mV) within 2 s. Major damage to the midvein induced fast and slow depolarization waves in unwounded neighbor leaves, but only slow depolarization waves in non-neighbor leaves. The slow depolarization waves rose to maximum amplitude (c. 30 mV) within 14 s. Expression of a jasmonate-responsive gene was detected in leaves in which SEs displayed fast depolarization waves. No electrical signals were detected in SEs of unwounded neighbor leaves of plants with suppressed expression of GLR3.3 and GLR3.6. EPG applied as a novel approach to plant electrophysiology allows cell-specific, robust, real-time monitoring of early electrophysiological responses in plant cells to damage, and is potentially applicable to a broad range of plant-herbivore interactions.
Resumo:
Bridge deck and substructure deterioration due to the corrosive effects of deicing chemicals on reinforcing steel is a problem facing many transportation agencies. The main concern is protection of older bridges with uncoated reinforcing steel. Many different methods have been tried over the past years to repair bridge decks. The Iowa system of bridge deck rehabilitation has proven to be very effective. It consists of scarifying the deck surface, removing any deteriorated concrete, and overlaying with low slump dense concrete. Another rehabilitation method that has emerged is cathodic protection. It has been used for many years in the protection of underground pipelines and in 1973 was first installed on a bridge deck. Cathodic protection works by applying an external source of direct current to the embedded reinforcing steel, thereby changing the electrochemical process of corrosion. The corroding steel, which is anodic, is protected by changing it to a cathodic state. The technology involved in cathodic protection as applied to bridge decks has improved over the last 12 years. One company marketing new technology in cathodic protection systems is Raychem Corporation of Menlo Park, California. Their system utilizes a Ferex anode mesh that distributes the impressed direct current over the deck surface. Ferex mesh was selected because it seemed readily adaptable to the Iowa system of bridge deck rehabilitation. The bridge deck would be scarified, deteriorated concrete removed, Ferex anode mesh installed, and overlaid with low slump dense concrete. The Federal Highway Administration (FHWA) promotes cathodic protection under Demonstration Project No. 34, "Cathodic Protection for Reinforced Concrete Bridge Decks."
Resumo:
Hand hygiene compliance of patients receiving hemodialysis treatment is a contemporary discussion topic among health care professionals in the Nephrology Clinic of Helsinki University City Hospital. The purpose of the Final Thesis is to review patient hand hygiene in terms of risks its lack entails and based on the evidence based findings to design an end product as a poster. The poster can be utilised in the Nephrology Clinic's nursing environment to educate and motivate patients to pay specifid attention to the importance of hand hygiene. The method used was a systematic literature review. The most important evidence based findings were extracted from the chosen thirteen scientific articles. All articles were searched from the Cumulative Index to Nursing and Allied Health Literature electronic database. The gathered information was then used to build the content of a patient education tool that for this project was defined as a Poster. The findings in this study showed that transmission of bloodborne infections, like Hepatitis B or C virus can occur through a vascular access and that the consequences of this can be very fatal. Additionally, environmental surfaces such as furniture, door knobs and dialysis machine control knobs were all possible infection sources for the patient receiving hemodialysis treatment. Adherence to good hand hygiene behaviour lowered the risk for infections. The end product of this study is a poster that is targeted to patients undergoing hemodialysis treatment. Using a health promotion agenda in the Poster, it is hoped that patients will pay more attention to the importance of hand hygiene and that they will be more motivated to use aseptic methods such as alcohol based hand rubs in the hemodialysis setting.