883 resultados para Diffuse adherence
Resumo:
BACKGROUND: Many patients with diabetes have poor blood pressure (BP) control. Pharmacological therapy is the cornerstone of effective BP treatment, yet there are high rates both of poor medication adherence and failure to intensify medications. Successful medication management requires an effective partnership between providers who initiate and increase doses of effective medications and patients who adhere to the regimen. METHODS: In this cluster-randomized controlled effectiveness study, primary care teams within sites were randomized to a program led by a clinical pharmacist trained in motivational interviewing-based behavioral counseling approaches and authorized to make BP medication changes or to usual care. This study involved the collection of data during a 14-month intervention period in three Department of Veterans Affairs facilities and two Kaiser Permanente Northern California facilities. The clinical pharmacist was supported by clinical information systems that enabled proactive identification of, and outreach to, eligible patients identified on the basis of poor BP control and either medication refill gaps or lack of recent medication intensification. The primary outcome is the relative change in systolic blood pressure (SBP) measurements over time. Secondary outcomes are changes in Hemoglobin A1c, low-density lipoprotein cholesterol (LDL), medication adherence determined from pharmacy refill data, and medication intensification rates. DISCUSSION: Integration of the three intervention elements--proactive identification, adherence counseling and medication intensification--is essential to achieve optimal levels of control for high-risk patients. Testing the effectiveness of this intervention at the team level allows us to study the program as it would typically be implemented within a clinic setting, including how it integrates with other elements of care. TRIAL REGISTRATION: The ClinicalTrials.gov registration number is NCT00495794.
Resumo:
BACKGROUND: Fibronectin-null cells assemble soluble fibronectin shortly after adherence to a substrate coated with intact fibronectin but not when adherent to the cell-binding domain of fibronectin (modules (7)F3-(10)F3). Interactions of adherent cells with regions of adsorbed fibronectin other than modules (7)F3-(10)F3, therefore, are required for early display of the cell surface sites that initiate and direct fibronectin assembly. METHODOLOGY/PRINCIPAL FINDINGS: To identify these regions, coatings of proteolytically derived or recombinant pieces of fibronectin containing modules in addition to (7)F3-(10)F3 were tested for effects on fibronectin assembly by adherent fibronectin-null fibroblasts. Pieces as large as one comprising modules (2)F3-(14)F3, which include the heparin-binding and cell adhesion domains, were not effective in supporting fibronectin assembly. Addition of module (1)F3 or the C-terminal modules to modules (2)F3-(14)F3 resulted in some activity, and addition of both (1)F3 and the C-terminal modules resulted in a construct, (1)F3-C, that best mimicked the activity of a coating of intact fibronectin. Constructs (1)F3-C V0, (1)F3-C V64, and (1)F3-C Delta(V(15)F3(10)F1) were all able to support fibronectin assembly, suggesting that (1)F3 through (11)F1 and/or (12)F1 were important for activity. Coatings in which the active parts of (1)F3-C were present in different proteins were much less active than intact (1)F3-C. CONCLUSIONS: These results suggest that (1)F3 acts together with C-terminal modules to induce display of fibronectin assembly sites on adherent cells.
Resumo:
Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post∕premeasurement calibration, thus saving up to an hour of precious clinical time.
Resumo:
Steady-state diffuse reflection spectroscopy is a well-studied optical technique that can provide a noninvasive and quantitative method for characterizing the absorption and scattering properties of biological tissues. Here, we compare three fiber-based diffuse reflection spectroscopy systems that were assembled to create a light-weight, portable, and robust optical spectrometer that could be easily translated for repeated and reliable use in mobile settings. The three systems were built using a broadband light source and a compact, commercially available spectrograph. We tested two different light sources and two spectrographs (manufactured by two different vendors). The assembled systems were characterized by their signal-to-noise ratios, the source-intensity drifts, and detector linearity. We quantified the performance of these instruments in extracting optical properties from diffuse reflectance spectra in tissue-mimicking liquid phantoms with well-controlled optical absorption and scattering coefficients. We show that all assembled systems were able to extract the optical absorption and scattering properties with errors less than 10%, while providing greater than ten-fold decrease in footprint and cost (relative to a previously well-characterized and widely used commercial system). Finally, we demonstrate the use of these small systems to measure optical biomarkers in vivo in a small-animal model cancer therapy study. We show that optical measurements from the simple portable system provide estimates of tumor oxygen saturation similar to those detected using the commercial system in murine tumor models of head and neck cancer.
Resumo:
OBJECTIVES: Our objectives were to: 1) describe patient-reported communication with their provider and explore differences in perceptions of racially diverse adherent versus nonadherent patients; and 2) examine whether the association between unanswered questions and patient-reported medication nonadherence varied as a function of patients' race. METHODS: We conducted a cross-sectional analysis of baseline in-person survey data from a trial designed to improve postmyocardial infarction management of cardiovascular disease risk factors. RESULTS: Overall, 298 patients (74%) reported never leaving their doctor's office with unanswered questions. Among those who were adherent and nonadherent with their medications, 183 (79%) and 115 (67%) patients, respectively, never left their doctor's office with unanswered questions. In multivariable logistic regression, although the simple effects of the interaction term were different for patients of nonminority race (odds ratio [OR]: 2.16; 95% confidence interval [CI]: 1.19-3.92) and those of minority race (OR: 1.19; 95% CI: 0.54-2.66), the overall interaction effect was not statistically significant (P=0.24). CONCLUSION: The quality of patient-provider communication is critical for cardiovascular disease medication adherence. In this study, however, having unanswered questions did not impact medication adherence differently as a function of patients' race. Nevertheless, there were racial differences in medication adherence that may need to be addressed to ensure optimal adherence and health outcomes. Effort should be made to provide training opportunities for both patients and their providers to ensure strong communication skills and to address potential differences in medication adherence in patients of diverse backgrounds.
Resumo:
The reported incidence of colonization of oropharyngeal medical devices with Candida spp. has increased in recent years, although few studies that have systematically examined the adherence of yeast cells to such biomaterials, the primary step in the process of colonization. This study, therefore, examined the effects of oropharyngeal atmospheric conditions (5% v/v carbon dioxide) and the presence of a salivary conditioning film on both the surface properties and adherence of Candida albicans, Candida krusei and Candida tropicalis to PVC and silicone. Furthermore, the effects of the salivary conditioning film on the surface properties of these biomaterials are reported. Growth of the three Candida spp. in an atmosphere containing 5% v/v CO2 significantly increased their cell surface hydrophobicity and reduced the zeta potential of C. albicans and C. krusei yet increased the zeta potential of C. tropicalis (p < 0.05). Furthermore, growth in 5% v/v CO2 decreased the adherence of C. tropicalis and C. albicans to both PVC and silicone, however, increased adherence of C. krusei (p < 0.05). Pre-treatment of the microorganisms with pooled human saliva significantly decreased their cell surface hydrophobicity and increased their adherence to either biomaterial in comparison to yeast cells that had been pre-treated with PBS (p < 0.05). Saliva treatment of the microorganisms had no consistent effect on microbial zeta potential. Interestingly, adherence of the three, saliva-treated Candida spp. to saliva-treated silicone and PVC was significantly lower than whenever the microorganisms and biomaterials had been treated with PBS (p < 0.05). Treatment of silicone and PVC with saliva significantly altered the surface properties, notably reducing both the advancing and receding contact angles and, additionally, the microrugosity. These effects may contribute to the decreased adherence of saliva-treated microorganisms to these biomaterials. In conclusion, this study has demonstrated the effects of physiological conditions within the oral cavity on the adherence of selected Candida spp. to biomaterials employed as oropharyngeal medical devices. In particular, this study has ominously shown that these materials act as substrates for yeast colonization, highlighting the need for advancements in biomaterial design. Furthermore, it is important that physiological conditions should be employed whenever biocompatibility of oropharyngeal biomaterials is under investigation. © 2001 Kluwer Academic Publishers.
Resumo:
In this study, the resistance of biodegradable biomaterials, composed of blends of poly(e-caprolactone) (PCL) and the polymeric antimicrobial complex, polyvinylpyrrolidone–iodine (PVP-I) to the adherence of a clinical isolate of Escherichia coli is described. Blends of PCL composed of a range of high (50,000 g mol1) to low (5000 g mol1) molecular weight ratios of polymer and either
devoid of or containing PVP-I (1% w/w) were prepared by solvent evaporation. Following incubation (4 h), there was no relationship between m. wt. ratio of PCL in ?lms devoid of PVP-I and adherence ofE. coli. Conversely, microbial adherence to PCL containing PVP-I decreased as the ratio of high:low m. wt. polymer was decreased and was approximately 1000 fold lower than that to comparator ?lms devoid of PVP-I. Following periods of immersion of PVP-I containing PCL ?lms under sink conditions in phosphate buffered saline, subsequent adherence of E. coli was substantially reduced for 2 days (40:60 m. wt. ratio) and 6 days (100:0 m. wt. ratio). Concurrent exposure of PCL and E. coli to sub-minimum inhibitory concentrations (sub-MIC) of PVP-I signi?cantly reduced microbial adherence to the biomaterial; however, the molecular weight ratio of PCL did not affect this outcome. Pretreatment of PCL with similar sub-MIC of PVP-I prior to inclusion within the microbial adherence assay signi?cantly decreased the subsequent adherence of E. coli. Greatest reduction in adherence was observed following treatment of PCL (40:60 m. wt. ratio) with 0.0156% w/w PVP-I. In conclusion, this study has illustrated the utility of PVP-I as a suitable therapeutic agent for incorporation within PCL as a novel biomaterial. Due to the combined antimicrobial and biodegradable properties, these biomaterials offer a promising strategy for the reduction in medical device related infection. © 2004 Elsevier Ltd. All rights reserved.