994 resultados para Differential Operator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper gives a modification of a class of stochastic Runge–Kutta methods proposed in a paper by Komori (2007). The slight modification can reduce the computational costs of the methods significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microgrid provides economical and reliable power to customers by integrating distributed resources more effectively. Islanded operation enables a continuous power supply for loads during a major grid disturbance. Reliability of a microgrid can be further increased by forming a mesh configuration. However, the protection of mesh microgrids is a challenging task. In this paper, protection schemes are discussed using current differential protection of a microgrid. The protection challenges associated with bi-directional power flow, meshed configuration, changing fault current level due to intermittent nature of DGs and reduced fault current level in an islanded mode are considered in proposing the protection solutions. Relay setting criterion and current transformer (CT) selection guidelines are also discussed. The results are verified using MATLAB calculations and PSCAD simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the long term, with development of skill, knowledge, exposure and confidence within the engineering profession, rigorous analysis techniques have the potential to become a reliable and far more comprehensive method for design and verification of the structural adequacy of OPS, write Nimal J Perera, David P Thambiratnam and Brian Clark. This paper explores the potential to enhance operator safety of self-propelled mechanical plant subjected to roll over and impact of falling objects using the non-linear and dynamic response simulation capabilities of analytical processes to supplement quasi-static testing methods prescribed in International and Australian Codes of Practice for bolt on Operator Protection Systems (OPS) that are post fitted. The paper is based on research work carried out by the authors at the Queensland University of Technology (QUT) over a period of three years by instrumentation of prototype tests, scale model tests in the laboratory and rigorous analysis using validated Finite Element (FE) Models. The FE codes used were ABAQUS for implicit analysis and LSDYNA for explicit analysis. The rigorous analysis and dynamic simulation technique described in the paper can be used to investigate the structural response due to accident scenarios such as multiple roll over, impact of multiple objects and combinations of such events and thereby enhance the safety and performance of Roll Over and Falling Object Protection Systems (ROPS and FOPS). The analytical techniques are based on sound engineering principles and well established practice for investigation of dynamic impact on all self propelled vehicles. They are used for many other similar applications where experimental techniques are not feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This workshop provides an ergonomic framework and design rules for the design of automotive controls, considering anthropometric design, physiologic design, biomechanic design and information design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed generators (DGs) are defined as generators that are connected to a distribution network. The direction of the power flow and short-circuit current in a network could be changed compared with one without DGs. The conventional protective relay scheme does not meet the requirement in this emerging situation. As the number and capacity of DGs in the distribution network increase, the problem of coordinating protective relays becomes more challenging. Given this background, the protective relay coordination problem in distribution systems is investigated, with directional overcurrent relays taken as an example, and formulated as a mixed integer nonlinear programming problem. A mathematical model describing this problem is first developed, and the well-developed differential evolution algorithm is then used to solve it. Finally, a sample system is used to demonstrate the feasiblity and efficiency of the developed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinicians regularly face the confronting challenge of differentiating a choroidal naevus from a melanoma. Uveal naevi are a relatively common finding during routine eye examinations: a prevalence of 6.5 per cent has been reported.1 In contrast, malignant melanomata are uncommon, being found in six persons per million population, but they can have devastating implications and consequences.2 Differential diagnoses can be difficult to make with certainty; any additional information that can assist in this process is advantageous...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks. © 2012 American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the optimal of black-start strategies is very important for speeding the restoration speed of a power system after a global blackout. Most existing black-start decision-making methods are based on the assumption that all indexes are independent of each other, and little attention has been paid to the group decision-making method which is more reliable. Given this background, the intuitionistic fuzzy set and further intuitionistic fuzzy Choquet integral operator are presented, and a black-start decision-making method based on this integral operator is presented. Compared to existing methods, the proposed algorithm cannot only deal with the relevance among the indexes, but also overcome some shortcomings of the existing methods. Finally, an example is used to demonstrate the proposed method. © 2012 The Institution of Engineering and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n) (n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko’s Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi term time-space fractional models including fractional Laplacian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many physical processes exhibit fractional order behavior that varies with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider the time variable fractional order mobile-immobile advection-dispersion model. Numerical methods and analyses of stability and convergence for the fractional partial differential equations are quite limited and difficult to derive. This motivates us to develop efficient numerical methods as well as stability and convergence of the implicit numerical methods for the fractional order mobile immobile advection-dispersion model. In the paper, we use the Coimbra variable time fractional derivative which is more efficient from the numerical standpoint and is preferable for modeling dynamical systems. An implicit Euler approximation for the equation is proposed and then the stability of the approximation are investigated. As for the convergence of the numerical scheme we only consider a special case, i.e. the time fractional derivative is independent of time variable t. The case where the time fractional derivative depends both the time variable t and the space variable x will be considered in the future work. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalized fractional partial differential equations have now found wide application for describing important physical phenomena, such as subdiffusive and superdiffusive processes. However, studies of generalized multi-term time and space fractional partial differential equations are still under development. In this paper, the multi-term time-space Caputo-Riesz fractional advection diffusion equations (MT-TSCR-FADE) with Dirichlet nonhomogeneous boundary conditions are considered. The multi-term time-fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0, 1], [1, 2] and [0, 2], respectively. These are called respectively the multi-term time-fractional diffusion terms, the multi-term time-fractional wave terms and the multi-term time-fractional mixed diffusion-wave terms. The space fractional derivatives are defined as Riesz fractional derivatives. Analytical solutions of three types of the MT-TSCR-FADE are derived with Dirichlet boundary conditions. By using Luchko's Theorem (Acta Math. Vietnam., 1999), we proposed some new techniques, such as a spectral representation of the fractional Laplacian operator and the equivalent relationship between fractional Laplacian operator and Riesz fractional derivative, that enabled the derivation of the analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations. © 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the variable order time fractional diffusion equation. We adopt the Coimbra variable order (VO) time fractional operator, which defines a consistent method for VO differentiation of physical variables. The Coimbra variable order fractional operator also can be viewed as a Caputo-type definition. Although this definition is the most appropriate definition having fundamental characteristics that are desirable for physical modeling, numerical methods for fractional partial differential equations using this definition have not yet appeared in the literature. Here an approximate scheme is first proposed. The stability, convergence and solvability of this numerical scheme are discussed via the technique of Fourier analysis. Numerical examples are provided to show that the numerical method is computationally efficient. Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adopting a model of job enrichment we report on a longitudinal case investigating the perceived impact of an Enterprise Resource Planning (ERP) system on user job design characteristics. Our results indicated that in the context of an ERP geared towards centralisation and standardisation the extent to which users perceived an increase or decrease in job enrichment was associated with aspects such as formal authority and the nature of their work role. Experienced operational employees proficient in the original legacy system perceived ERP system protocols to constrain their actions, limit training and increase dependence on others in the workflow. Conversely, managerial users reported a number of benefits relating to report availability, improved organisational transparency and increased overall job enrichment. These results supported our argument concerning the relationship between ERPs with a standardisation intent and positive job enrichment outcomes for managerial users and negative job-related outcomes for operational users.