963 resultados para Difference FTIR spectroscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied at a molecular level the interaction of heparins on bothropstoxin-1 (BthTx-1), a phospholipase A(2) toxin. The protein was monitored using gel filtration chromatography, dynamic light scattering (DLS), circular dichroism (CD), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and intrinsic tryptophan fluorescence emission (ITFE) spectroscopy. The elution profile of the protein presents a displacement of the protein peak to larger complexes when interacting with higher concentration of heparin. The DLS results shows two R-h at a molar ratio of 1, one to the distribution of the protein and the second for the action of heparin on BthTx-I structures, and a large distribution with the increase of protein. The interaction is accompanied by significant changes in the CD spectra, showing two common features: a decrease in signal at 208 nm (3 and 6 kDa heparins) and an isodichroic point near 226 nm (3 kDa heparin). FTIR spectra indicate that only a few amino acid residues are involved in this interaction. Alterations in the ITFE by binding heparins suggest that the initial binding occurs on the ventral face of BthTx-1. Together, these results add an experimental and structural basis on the action mechanism of the heparins over the phospholipases A(2) and provide a molecular model to elucidate the interaction of the enzyme-heparin complex at a molecular level. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In waterlogged environments of the upper Amazon basin, organic matter is a major driver in the podzolisation of clay-depleted laterites, especially through its ability to weather clay minerals and chelate metals. Its structure in eight organic-rich samples collected at the margin and in the centre of the podzolic area of a soil sequence was investigated. The samples illustrate the main steps in the development of waterlogged podzols and belong either to eluviated topsoil A horizons or to illuviated subsoil Bhs, Bh and 2BCs horizons. Organic matter micromorphology was described, and the overall molecular structure of their clay size fractions was assessed using Fourier transform infrared (FTIR) spectroscopy and cross polarization/magic angle spinning (CP/MAS) C-13 nuclear magnetic resonance (NMR). Organic features of the horizons strongly vary both vertically and laterally in the sequence. Topsoil A horizons are dominated by organic residues juxtaposed to clean sands with a major aliphatic contribution. In the subsoil, numerous coatings, characteristic of illuviation processes, are observed in the following horizons: (i) At the margin and bottom parts of the podzolic area, dark brown organic compounds of low aromacity with abundant oxygen-containing groups accumulate in Bhs and 2BCs horizons. Their spectroscopic features agree with the observation of cracked coatings in 2BCs and the presence of organometallic complexes, whose abundance decreases towards low lying positions. (ii) By contrast, black organic compounds of high aromacity with few chelating functions accumulate as coatings and infills in the overlying sandy Bh horizon of well-expressed waterlogged podzols. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cassava starch has been shown to make transparent and colorless flexible films without any previous chemical treatment. The functional properties of edible films are influenced by starch properties, including chain conformation, molecular bonding, crystallinity, and water content. Fourier-transform infrared (FTIR) spectroscopy in combination with attenuated total reflectance (ATR) has been applied for the elucidation of the structure and conformation of carbohydrates. This technique associated with chemometric data processing could indicate the relationship between the structural parameters and the functional properties of cassava starch-based edible films. Successful prediction of the functional properties values of the starch-based films was achieved by partial least squares regression data. The results showed that presence of the hydroxyl group on carbon 6 of the cyclic part of glucose is directly correlated with the functional properties of cassava starch films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four lignin samples were extracted from sugar cane bagasse using four different alcohols (methanol, ethanol, n-propanol, and 1-butanol) via the organosolv-CO2 supercritical pulping process. Langmuir films were characterized by surface pressure vs mean molecular area (Pi-A) isotherms to exploit information at the molecular level carrying out stability tests, cycles of compression/expansion (hysteresis), subphase temperature variations, and metallic ions dissolved into the water subphase at different concentrations. Briefly, it was observed that these lignins are relatively stable on the water surface when compared to those obtained via different extraction processes. Besides, the Pi-A isotherms are shifted to smaller molecular areas at higher subphase temperatures and to larger molecular areas when the metallic ions are dissolved into the subphase. The results are related to the formation of stable aggregates (domains) onto the water subphase by these lignins, as shown in the Pi-A isotherms. It was found as well that the most stable lignin monolayer onto the water subphase is that extracted with 1-butanol. Homogeneous Langmuir-Blodgett (LB) films of this lignin could be produced as confirmed by UV-vis absorption spectroscopy and the cumulative transfer parameter. In addition, FTIR analysis showed that this lignin LB film is structured in a way that the phenyl groups are organized preferentially parallel to the substrate surface. Further, these LB films were deposited onto gold interdigitated electrodes and ITO and applied in studies involving the detection of Cd+2 ions in aqueous solutions at low concentration levels throughimpedance spectroscopy and electrochemical measurements. FTIR spectroscopy was carried out before and after soaking the thin films into Cd+2 aqueous solutions, revealing a possible physical interaction between the lignin phenyl groups and the heavy metal ions. The importance of using nanostructured systems is demonstrated as well by comparing both LB and cast films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work deals with the synthesis and thermal decomposition of complexes of general formula: Ln(beta-dik)(3)L (where Ln=Tb(+3), beta-dik=4,4,4-trifluoro-1-phenyl-1,3butanedione(btfa) and L=1,10-fenantroline(phen) or 2,2-bipiridine(bipy). The powders were characterized by melting point, FTIR spectroscopy, LTV-visible, elemental analysis, scanning differential calorimeter(DSC) and thermogravimetry(TG). The TG/DSC curves were obtained simultaneously in a system DSC-TGA, under nitrogen atmosphere. The experimental conditions were: 0.83 ml.s(-1) carrier gas flow, 2.0 +/- 0.5 mg samples and 10 degrees C.min(-1) heating rate. The CHN elemental analysis of the Tb(btfa)(3)bipy and Tb(btfa)(3)phen complexes, are in good agreement with the expected values. The IR spectra evinced that the metal ion is coordinated to the ligands via C=O and C-N groups. The TG/DTG/DSC curves of the complexes show that they decompose before melting. The profiles of the thermal decomposition of the Tb(btfa)3phen and Tb(btfa)3bipy showed six and five decomposition stages, respectively. Our data suggests that the thermal stability of the complexes under investigation followed the order: Tb(btfa)(3)phen < Tb(btfa)(3)bipy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A polymer analogous synthesis involving the reductive amination of phosphorylcholine (PC)-glyceraldehyde with primary amines of deacetylated chitosan (M-w approximate to 57000 g mol(-1)) was used to prepare phosphorylcholine-substituted chitosans (PC-CH) with a degree of substitution (DS) ranging from similar to 11 to similar to 53 mol% PC-substituted glucosamine residues. The PC-CH derivatives were characterized by H-1 NMR spectroscopy, FTIR spectroscopy, and multiangle laser light scattering gel permeation chromatography (MALLS-GPC). The pKa of the PC-substituted amine groups (pKa approximate to 7.20) was determined by H-1 NMR titration. The PC-CH samples (1.0 g L-1) were shown to be nontoxic using an MTT assay performed with human KB cells. Aqueous solutions of PC-CH samples (4.0 g L-(1)) of DS g 22 mol% PC-substituted glucosamine residues remained clear, independently of pH (4.0 < pH < 11.0). The remarkable water solubility and nontoxicity displayed by the new PC-CH samples open up new opportunities in the design of chitosan-based biomaterials and nanoparticles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Langmuir and Langmuir-Blodgett films of 16-membered azobenzocrown ether with naphthalene residue were prepared and characterized. The Langmuir monolayers were successfully transferred to form LB films onto solid substrates. The films deposited onto ITO electrodes were also used as electrodes in cyclic voltammetry and the results showed that the films had a distinct response to metal ions. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports on the sol-gel preparation and structural and optical characterization of new Er3+-doped SiO2-Nb 2O5 nanocomposite planar waveguides. Erbium-doped (100-x)SiO2-xNb2O5 waveguides were deposited on silica-on-silicon substrates and Si(1 0 0) by the dip-coating technique. The waveguides exhibited uniform refractive index distribution across the thickness, efficient light injection at 1538 nm, and low losses at 632 and 1538 nm. The band-gap values lied between 4.12 eV and 3.55 eV for W1-W5, respectively, showing an excellent transparency in the visible and near infrared region for the waveguides. Fourier Transform Infrared (FTIR) Spectroscopy analysis evidenced SiO2-Nb2O5 nanocomposite formation with controlled phase separation in the films. The HRTEM and XRD analyses revealed Nb2O5 orthorhombic T-phase nanocrystals dispersed in a silica-based host. Photoluminescence (PL) analysis showed a broad band emission at 1531 nm, assigned to the 4I13/2 → 4I15/2 transition of the Er3+ ions present in the nanocomposite, with a full-width at half medium of 48-68 nm, depending on the niobium content and annealing. Hence, these waveguides are excellent candidates for application in integrated optics, especially in EDWA and WDM devices. © 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Textile industries use large amounts of water in dyeing processes and a wide variety of synthetic dyes. A small concentration of these dyes in the environment can generate highly visible pollution and changes in aquatic ecosystems. Adsorption, biosorption, and biodegradation are the most advantageous dye removal processes. Biodegradation occurs when enzymes produced by certain microorganisms are capable of breaking down the dye molecule. To increase the efficiency of these processes, cell immobilization enables the reuse of the immobilized cells and offers a high degree of mechanical strength, allowing metabolic processes to take place under adverse conditions. The aim of the present study was to investigate the use of Saccharomyces cerevisiae immobilized in activated sugarcane bagasse for the degradation of Acid Black 48 dye in aqueous solutions. For such, sugarcane bagasse was treated with polyethyleneimine (PEI). Concentrations of a 1 % S. cerevisiae suspension were evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays for 240 h with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated by Fourier transform infrared spectrophotometry. The results indicated a probable change in the dye molecule and the possible formation of new metabolites. Thus, S. cerevisiae immobilized in sugarcane bagasse is very attractive for biodegradation processes in the treatment of textile effluents. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chloropropyl silica gel was modified with octa(3-aminopropyl) octasilsesquioxane and characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), spectroscopies, and surface and area porosity. The specific sorption capacity of metallic ions (Cu2+ and Ni2+) increases in the following solvent order: water < ethanol 42% < ethanol < ketone. The high values of the constant (K) in the order of 103 L mol-1 suggested the high adsorbent capacity of the modified silica (SGAPC) for Cu2+ and Ni2+. SGAPC was applied to a separation column and shows recoveries of around 100% of copper in samples of sugar cane spirit, vodka, ginger brandy, and ethanol fuel. © 2013 Devaney Ribeiro Do Carmo et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyols are widely used as sugar substitutes and provide texture to foods. Guar gum has many applications in food industry such as increasing product viscosity and improving texture. Knowledge of rheological properties of gum/polyol systems is important to permit replacing sugar while maintaining product texture. In this work, rheological properties of 0.1, 0.5 and 1 g/100 g guar solutions containing 10 and 40 g/100 g of maltitol, sorbitol, or xylitol were studied. The behavior of these mixtures was evaluated by steady and oscillatory shear measurements, and after a freezing/thawing cycle. Apparent viscosity of guar solutions increased with addition of polyols and with the increase in their concentrations, except for 40 g/100 g sorbitol addition to 1 g/100 g guar gum, in which the apparent viscosity decreased. Addition of polyols also increased the dynamic moduli of the systems. In mixtures of guar with 40 g/100 g polyol, the phase angle (δ) was below unity, but was dependent on frequency, which is characteristic of concentrated solutions with a certain degree of structuring. FTIR spectroscopy was studied to provide information on possible interactions between guar gum and polyols. Analyses carried out after freezing/thawing showed no changes in the viscoelastic behavior of the solutions. © 2013 Elsevier Ltd.