952 resultados para Diesel locomotives


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique to measure wall flow variation in Diesel Particle Filters (DPFs) is described. In a recent paper, it was shown how the flow distribution in DPFs could be measured in a non-destructive manner. This involved measuring the progressive dilution of a tracer gas introduced at the "outlet" channel upstream end. In the present paper, a significant further improvement to this technique is described, in which only a single probe is required, rather than the two of the previous technique. The single, traversable, probe consists of a controllable flow sink, and slightly downstream, a tracer gas supply. By controlling the sink flow rate such that a very small concentration of tracer gas is aspirated into it, the total flow up to that location in the channel is determined. Typical results showing the axial variation in the wall flow for known wall blockage cases are presented. It is suggested that this technique could be used to interpret the soot loading in the filter channels in a non-intrusive way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-dimensional combustion code implementing the Conditional Moment Closure turbulent combustion model interfaced with a well-established RANS two- phase flow field solver has been employed to study a broad range of operating conditions for a heavy duty direct-injection common-rail Diesel engine. These conditions include different loads (25%, 50%, 75% and full load) and engine speeds (1250 and 1830 RPM) and, with respect to the fuel path, different injection timings and rail pressures. A total of nine cases have been simulated. Excellent agreement with experimental data has been found for the pressure traces and the heat release rates, without adjusting any model constants. The chemical mechanism used contains a detailed NOx sub-mechanism. The predicted emissions agree reasonably well with the experimental data considering the range of operating points and given no adjustments of any rate constants have been employed. In an effort to identify CPU cost reduction potential, various dimensionality reduction strategies have been assessed. Furthermore, the sensitivity of the predictions with respect to resolution in particular relating to the CMC grid has been investigated. Overall, the results suggest that the presented modelling strategy has considerable predictive capability concerning Diesel engine combustion without requiring model constant calibration based on experimental data. This is true particularly for the heat release rates predictions and, to a lesser extent, for NOx emissions where further progress is still necessary. © 2009 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common-rail fuel injection systems on modern light duty diesel engines are effectively able to respond instantaneously to changes in the demanded injection quantity. In contrast, the air-system is subject to significantly slower dynamics, primarily due to filling/emptying effects in the manifolds and turbocharger inertia. The behaviour of the air-path in a diesel engine is therefore the main limiting factor in terms of engine-out emissions during transient operation. This paper presents a simple mean-value model for the air-path during throttled operation, which is used to design a feed-forward controller that delivers very rapid changes in the in-cylinder charge properties. The feed-forward control action is validated using a state-of-the-art sampling system that allows true cycle-by-cycle measurement of the in-cylinder CO2 concentration. © 2011 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new experimental configuration has been developed to examine the effects of flow on the autoignition of dilute diesel and biodiesel sprays, where the spray is injected in the form of monodisperse individual droplets at right angles to a hot air turbulent flow. The ignition location has been measured by monitoring the OH * chemiluminescence. A qualitative comparison of the flame behaviour between ethanol, acetone, heptane and biodiesel as fuels has also been carried out. With decreasing volatility of the fuel, the flame showed progressively a higher number of individual droplets burning, with the first autoignition spots appearing at random locations but in general earlier than the intense droplet-flame emission. The time-averaged autoignition length increased with increasing air velocity and with increasing intensity of the turbulence, while it decreased with the temperature and the droplet size. The data can be used for validating models for two-phase turbulent combustion. © 2012 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that accurate EGR control is paramount to controlling engine out emissions during steady state and transient operation of a diesel engine. The direct measurement of EGR is however non-trivial and especially difficult in engines with no external EGR control where the intake manifold CO2 levels can be measured more readily. This work studies the EGR behaviour in a medium duty diesel engine with a passive EGR rebreathing strategy for steady state and transient operation. High speed (response time ∼1ms) in-cylinder sampling using modified GDI valves is coupled with high frequency response analysers to measure the cyclic in-cylinder CO2, from which the EGR rate is deduced. It was found that controlling the EGR using the passive rebreathing strategy during certain combined speed and load transients is challenging, causing high smoke and NO emissions. The in-cylinder sampling method coupled with fast CO2 measurement (time constant ∼8ms) in the exhaust port gave insights about the EGR rate during these transients. The complex interaction of the manifold pressures, turbo-charger operation and trapped charge composition from the previous cycle simply can cause high dilution and therefore high smoke levels. The steady state variation of NO emissions with respect to EGR is also studied using a fast NO analyzer (time constant ∼2ms) in the exhaust port. Cyclic variation was found to be up to ±5% at some load conditions. © 2008 SAE International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partially premixed compression ignition (PPCI) engines operating with a low temperature highly homogeneous charge have been demonstrated previously using conventional diesel fuel. The short ignition delay of conventional diesel fuel requires high fuel injection pressures to achieve adequate premixing along with high levels of EGR (exhaust gas recirculation) to achieve low NOx emissions. Low load operating regions are typified by substantial emissions of CO and HC and there exists an upper operating load limitation due to very high rates of in-cylinder gas pressure rise. In this study mixtures of gasoline and diesel fuel were investigated using a multi-cylinder light duty diesel engine. It was found that an increased proportion of gasoline fuel reduced smoke emissions at higher operating loads through an increase in charge premixing resulting from an increase in ignition delay and higher fuel volatility. The results of this investigation confirm that a combination of fuel properties, exhibiting higher volatility and increased ignition delay, would enable a widening of the low emission operating regime, but that consideration must be given to combustion stability at low operating loads. Copyright © 2007 SAE International.