169 resultados para Dictyostelium discoideum
Resumo:
We have developed a fluorimetric assay with the use of the dye FM1-43 to determine the rate at which Dictyostelium amoebae endocytose their surface membrane. Our results show that they do so about once each 4–10 min. A clathrin null mutant takes its surface up only ∼30% more slowly, showing that this membrane uptake cannot be caused by clathrin-coated vesicles. Surprisingly, Ax2 and its parent, NC4, which differ in their rates of fluid-phase internalization by ∼60-fold, take up their surfaces at the same rates. These results show that, in axenic cells, the uptake of fluid and of surface area are separate processes. The large activity of this new endocytic cycle in both Ax2 and NC4 amoebae appears capable of delivering sufficient new surface area to advance the cells’ fronts during migration.
Resumo:
Starving Dictyostelium amoebae emit pulses of the chemoattractant cAMP that are relayed from cell to cell as circular and spiral waves. We have recently modeled spiral wave formation in Dictyostelium. Our model suggests that a secreted protein inhibitor of an extracellular cAMP phosphodiesterase selects for spirals. Herein we test the essential features of this prediction by comparing wave propagation in wild type and inhibitor mutants. We find that mutants rarely form spirals. The territory size of mutant strains is approximately 50 times smaller than wild type, and the mature fruiting bodies are smaller but otherwise normal. These results identify a mechanism for selecting one wave symmetry over another in an excitable system and suggest that the phosphodiesterase inhibitor may be under selection because it helps regulate territory size.
Resumo:
We have created a strain of Dictyostelium that is deficient for the Ca2+/calmodulin-independent MLCK-A. This strain undergoes cytokinesis less efficiently than wild type, which results in an increased frequency of multinucleate cells when grown in suspension. The MLCK-A-cells are able, however, to undergo development and to cap crosslinked surface receptors, processes that require myosin heavy chain. Phosphorylated regulatory light chain (RLC) is still present in MLCK-A-cells, indicating that Dictyostelium has one or more additional protein kinases capable of phosphorylating RLC. Concanavalin A treatment was found to induce phosphorylation of essentially all of the RLC in wild-type cells, but RLC phosphorylation levels in MLCK-A-cells are unaffected by concanavalin A. Thus MLCK-A is regulated separately from the other MLCK(s) in the cell.
Resumo:
Conventional myosin II is an essential protein for cytokinesis, capping of cell surface receptors, and development of Dictyostelium cells. Myosin II also plays an important role in the polarization and movement of cells. All conventional myosins are double-headed molecules but the significance of this structure is not understood since single-headed myosin II can produce movement and force in vitro. We found that expression of the tail portion of myosin II in Dictyostelium led to the formation of single-headed myosin II in vivo. The resultant cells contain an approximately equal ratio of double- and single-headed myosin II molecules. Surprisingly, these cells were completely blocked in cytokinesis and capping of concanavalin A receptors although development into fruiting bodies was not impaired. We found that this phenotype is not due to defects in myosin light chain phosphorylation. These results show that single-headed myosin II cannot function properly in vivo and that it acts as a dominant negative mutation for myosin II function. These results suggest the possibility that cooperativity of myosin II heads is critical for force production in vivo.
Resumo:
Complex three-dimensional waves of excitation can explain the observed cell movement pattern in Dictyostelium slugs. Here we show that these three-dimensional waves can be produced by a realistic model for the cAMP relay system [Martiel, J. L. & Goldbeter, A. (1987) Biophys J. 52, 807-828]. The conversion of scroll waves in the prestalk zone of the slug into planar wave fronts in the prespore zone can result from a smaller fraction of relaying cells in the prespore zone. Further, we show that the cAMP concentrations to which cells in a slug are exposed over time display a simple pattern, despite the complex spatial geometry of the waves. This cAMP distribution agrees well with observed patterns of cAMP-regulated cell type-specific gene expression. The core of the spiral, which is a region of low cAMP concentration, might direct expression of stalk-specific genes during culmination.
Resumo:
The serine/threonine kinase LKB1 is a regulator of critical events including development and stress responses in metazoans. The current study was undertaken to determine the function of LKB1 in Dictyostelium . During multicellular development and in response to stress insult, an apparent increase in the DdLKB1 kinase activity was observed. Depletion of DdLKB1 with a knockdown construct led to aberrant development; a severe reduction in prespore cell differentiation and a precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3, a well known cell-fate switch. Furthermore, DdLKB1 depleted cells displayed lower GSK3 activity than wild type cells in response to cAMP stimulation during development and failed to activate AMPK, a well known LKB1 target in mammals, in response to cAMP and stress insults. These results suggest that DdLKB1 positively regulates both GSK3 and AMPK during Dictyostelium development, and DdLKB1 is necessary for AMPK activation during stress response regulation. No apparent GSK3 activation was observed in response to stress insults. Spatial and temporal regulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) along the membrane of polarized cells is important for efficient chemotaxis. A REMI screen for PIP3 suppressors in the absence of stimulation led to the identification of SodC as PIP3 regulator. Consistent with their higher PIP3 levels, sodC− cells showed defects in chemotaxis and exhibited higher intra-cellular superoxide levels. Protein localization studies along with observations from GPI specific PI-PLC treatment of wild-type cells suggested that SodC is a GPI anchored outer-membrane protein. SodC showed superoxide dismutase activity in vitro, and motility defects of sodC− cells can be rescued by expressing the intact SodC but not by the mutant SodC, which has point mutations that affect its dismutase function. Treatment of sodC− cells with LY294002, a pharmacological inhibitor of PI3K, partially rescued the polarization and chemoattractant sensing defects but not motility defects. Consistent with increased intracellular superoxide levels, sodC − cells also exhibited higher basal Ras activity, an upstream regulator of PI3K, which can be suppressed by a cell permeable superoxide scavenger, XTT, indicating that SodC is important in regulation of intracellular superoxide levels thereby regulating the Ras activity and PIP3 levels at the membrane.
Resumo:
While studies on metazoan cell proliferation, cell differentiation, and cytokine signaling laid the foundation of the current paradigms of tyrosine kinase signaling, similar studies using lower eukaryotes have provided invaluable insight for the understanding of mammalian pathways, such as Wnt and STAT pathways. Dictyostelium is one of the leading lower eukaryotic model systems where stress-induced cellular responses, Wnt-like pathways, and STAT-mediated pathways are well investigated. TheseDictyostelium pathways will be reviewed together with their mammalian counterparts to facilitate the comparative understanding of these variant and noncanonical pathways.
Resumo:
The serine/threonine kinase LKB1 is a regulator of critical events including development and stress responses in metazoans. The current study was undertaken to determine the function of LKB1 in Dictyostelium. During multicellular development and in response to stress insult, an apparent increase in the DdLKB1 kinase activity was observed. Depletion of DdLKB1 with a knockdown construct led to aberrant development; a severe reduction in prespore cell differentiation and a precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3, a well known cell-fate switch. Furthermore, DdLKB1 depleted cells displayed lower GSK3 activity than wild type cells in response to cAMP stimulation during development and failed to activate AMPK, a well known LKB1 target in mammals, in response to cAMP and stress insults. These results suggest that DdLKB1 positively regulates both GSK3 and AMPK during Dictyostelium development, and DdLKB1 is necessary for AMPK activation during stress response regulation. No apparent GSK3 activation was observed in response to stress insults. Spatial and temporal regulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) along the membrane of polarized cells is important for efficient chemotaxis. A REMI screen for PIP3 suppressors in the absence of stimulation led to the identification of SodC as PIP3 regulator. Consistent with their higher PIP3 levels, sodC- cells showed defects in chemotaxis and exhibited higher intra-cellular superoxide levels. Protein localization studies along with observations from GPI specific PI-PLC treatment of wild-type cells suggested that SodC is a GPI anchored outer-membrane protein. SodC showed superoxide dismutase activity in vitro, and motility defects of sodC- cells can be rescued by expressing the intact SodC but not by the mutant SodC, which has point mutations that affect its dismutase function. Treatment of sodC- cells with LY294002, a pharmacological inhibitor of PI3K, partially rescued the polarization and chemoattractant sensing defects but not motility defects. Consistent with increased intracellular superoxide levels, sodC- cells also exhibited higher basal Ras activity, an upstream regulator of PI3K, which can be suppressed by a cell permeable superoxide scavenger, XTT, indicating that SodC is important in regulation of intracellular superoxide levels thereby regulating the Ras activity and PIP3 levels at the membrane.
Resumo:
Regulating systems, that is, those which exhibit scale-invariant patterns in the adult, are supposed, to do so on account of interactions between cells during development. The nature of these interactions has to be such that the system of positional information (ldquomaprdquo) in the embryo also regulates. To our knowledge, this supposition regarding a regulating map has not been subjected to a direct test in any embryonic system. Here we do so by means of a simple and novel criterion and use it to examine tip regeneration in the mulicellular stage (slug) ofDictyostelium discoideum. When anterior, tip-containing fragments of slugs are amputated, a new tip spontaneously regenerates at the cut surface of the (remaining) posterior fragment. The time needed for regeneration to occur depends on the relative size of the amputated fragment but is independent of the total size of the slug. We conclude from this finding that there is at least one system underlying positional information in the slug which regulates.
Resumo:
This study addresses the issues of spatial distribution, dispersal, and genetic heterogeneity in social groups of the cellular slime molds (CSMs). The CSMs are soil amoebae with an unusual life cycle that consists of alternating solitary and social phases. Because the social phase involves division of labor with what appears to be an extreme form of "altruism", the CSMs raise interesting evolutionary questions regarding the origin and maintenance of sociality. Knowledge of the genetic structure of social groups in the wild is necessary for answering these questions. We confirm that CSMs are widespread in undisturbed forest soil from South India. They are dispersed over long distances via the dung of a variety of large mammals. Consistent with this mode of dispersal, most social groups in the two species examined for detailed study, Dictyostelium giganteum and Dictyostelium purpureum, are multi-clonal.
Resumo:
The stable co-existence of individuals of different genotypes and reproductive division of labour within heterogeneous groups are issues of fundamental interest from the viewpoint of evolution. Cellular slime moulds are convenient organisms in which to address both issues. Strains of a species co-occur, as do different species; social groups are often genetically heterogeneous. Intra- and interspecies 1:1 mixes of wild isolates of Dictyostelium giganteum and D.purpureum form chimaeric aggregates, following which they segregate to varying extents. Intraspecies aggregates develop in concert and give rise to chimaeric fruiting bodies that usually contain more spores (reproductives) of one component than the other. Reproductive skew and variance in the proportion of reproductives are positively correlated. Interspecies aggregates exhibit almost complete sorting; most spores in a fruiting body come from a single species. Between strains, somatic compatibility correlates weakly with sexual compatibility. It is highest within clones, lower between strains of a species and lowest between strains of different species. Trade-offs among fitness-related traits (between compatible strains), sorting out (between incompatible strains) and avoidance (between species) appear to lie behind coexistence.
Resumo:
生物学图式及其形成规律一直是生命科学特别是发育生物学的重要课题;同时也是组织工程中实现体外组织构建的核心科学问题之一。长期以来,对生物图式形成的模型研究的根本不足之处是以数理方法为基础的动力学模型研究和生物学背景的结合不够。因此,本文试图遵循生物图式本身的形成过程,寻求一条与生物学相适配的途径,即以哺乳动物组织发育/活组织工程化构建为目标,以细胞行为为基点,以力学一化学藕合作用为介导,以元胞自动机方法为基础,建立生物学图式形成的一个细胞一环境整体离散模型。应用这一整体离散模型,在不同的控制参数下,对盘基网柄菌的聚集图式和杆菌的生长图式进行了系统的分析,对血管发生(vasculogenesis)的自组装图式进行了初步的新的探索,得到了与实验研究定性上一致的结果。提出了“诱导开关”概念,对盘基网柄菌(Dictyostelium discoideu),杆菌(Bacillus)和血管内皮祖细胞(Endothelial Precursor cells,EPC)三种模式生物,分别以cAMP的信号波前,营养微粒,VEGF的浓度梯度等为诱导开关量。在对盘基网柄菌细胞接收到cAMP后分泌和定向迁移形成的聚集图式的模拟中,系统地考察了影响聚集图式的各种控制参数;一个重要的结果表明细胞初始响应间期对形成的聚集模式有十分显著的影响;引入聚集速度、回转半径、盒质量分布系数等概念对盘基网柄菌的聚集图式进行了一些定量描述的探索。在对杆菌因代谢、增殖、凋亡/衰亡而形成的生长图式的模拟中,系统地定量地分析了在初始营养浓度、营养/代谢物扩散快慢、代谢抑制三者藕合作用下的生长图式;引入定向流动边界,考察了杆菌向营养入口方向的优势生长。在对血管内皮祖细胞经vEGF分子浓度梯度场的诱导进行定向迁移,分化为血管内皮细胞,并自组装形成网状的原初毛细血管丛的模拟中,建立了一个微血管发生自组装图式的新的离散模型,为以后加入力与内皮细胞的相互作用以及血管再生等构建了一个前期模型框架;初步考察了细胞的浓度,细胞分泌vEGF分子的周期,vEGF分子的扩散时间尺度等对血管发生图式的影响因素。
Resumo:
在扫描电镜下观察了龙胆科双蝴蝶属8个种和蔓龙胆属6个种的种子表面纹饰。观察结果表明,2属的种子表面特征均为网状纹饰类型。其中Tripterospermum cordatum, T. volubile, T. chinense, T. discoideum, T. japonicum, T. filicaule, Crawfurdia delavayi和C. pricei的种子表面为细网状;T. hirticalyx, T. pingbianense, C. puberula, C. tibetica, C. campanulacea和C. crawfordioides的种子表面为粗网状。在龙胆属Gentiana的不同组中均在网状纹饰。因此,从种子表面特征可看出,龙胆属、双蝴蝶和蔓龙胆属3属间具较近的亲缘关系。同时,在双蝴蝶属中,种之间在种子表面特征上有分化,在表面纹饰的具体特征上存在较大差别。而在蔓龙胆属中种间差别很小,仅在一些种子表面有无附属物上存在差异。
Resumo:
Twenty-two populations of seven species of Cremanthodium from high altitude regions of western China were observed karyologically. C. ellisii, C. microglossum, C. brunneo-pilosum, C. stenoglossum, C. discoideum and C. lineare all had the same chromosome number of 2n=58 whereas C. humile had 2n=60. All chromosome numbers of these species are documented here for the first time. The basic number of x=30 is new for this genus. The karyotypes of all species belong to 2A type according to Stebbins' asymmetry classification of karyotypes. Two basic chromosome numbers, x=30 and x=29 in Cremanthodium, correspond exactly to two branching patterns in this genus, sympodial versus monopodial. The systematic and taxonomic statuses of the sympodial species need further study. The karyomorphological data provide no support to the sectional subdivision in Cremanthodium. (C) 2001 The Linnean Society of London.
Resumo:
Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS.