963 resultados para Design efficiency
Resumo:
This paper presents the findings from a study into the current exploitation of computer-supported collaborative working (CSCW) in design for the built environment in the UK. The research is based on responses to a web-based questionnaire. Members of various professions, including civil engineers, architects, building services engineers, and quantity surveyors, were invited to complete the questionnaire. The responses reveal important trends in the breadth and size of project teams at the same time as new pressures are emerging regarding team integration and efficiency. The findings suggest that while CSCW systems may improve project management (e.g., via project documentation) and the exchange of information between team members, it has yet to significantly support those activities that characterize integrated collaborative working between disparate specialists. The authors conclude by combining the findings with a wider discussion of the application of CSCW to design activity-appealing for CSCW to go beyond multidisciplinary working to achieve interdisciplinary working.
Resumo:
The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The conventional method for assessing acute oral toxicity (OECD Test Guideline 401) was designed to identify the median lethal dose (LD50), using the death of animals as an endpoint. Introduced as an alternative method (OECD Test Guideline 420), the Fixed Dose Procedure (FDP) relies on the observation of clear signs of toxicity, uses fewer animals and causes less suffering. More recently, the Acute Toxic Class method and the Up-and-Down Procedure have also been adopted as OECD test guidelines. Both of these methods also use fewer animals than the conventional method, although they still use death as an endpoint. Each of the three new methods incorporates a sequential dosing procedure, which results in increased efficiency. In 1999, with a view to replacing OECD Test Guideline 401, the OECD requested that the three new test guidelines be updated. This was to bring them in line with the regulatory needs of all OECD Member Countries, provide further reductions in the number of animals used, and introduce refinements to reduce the pain and distress experienced by the animals. This paper describes a statistical modelling approach for the evaluation of acute oral toxicity tests, by using the revised FDP for illustration. Opportunities for further design improvements are discussed.
Resumo:
Purpose: Acquiring details of kinetic parameters of enzymes is crucial to biochemical understanding, drug development, and clinical diagnosis in ocular diseases. The correct design of an experiment is critical to collecting data suitable for analysis, modelling and deriving the correct information. As classical design methods are not targeted to the more complex kinetics being frequently studied, attention is needed to estimate parameters of such models with low variance. Methods: We have developed Bayesian utility functions to minimise kinetic parameter variance involving differentiation of model expressions and matrix inversion. These have been applied to the simple kinetics of the enzymes in the glyoxalase pathway (of importance in posttranslational modification of proteins in cataract), and the complex kinetics of lens aldehyde dehydrogenase (also of relevance to cataract). Results: Our successful application of Bayesian statistics has allowed us to identify a set of rules for designing optimum kinetic experiments iteratively. Most importantly, the distribution of points in the range is critical; it is not simply a matter of even or multiple increases. At least 60 % must be below the KM (or plural if more than one dissociation constant) and 40% above. This choice halves the variance found using a simple even spread across the range.With both the glyoxalase system and lens aldehyde dehydrogenase we have significantly improved the variance of kinetic parameter estimation while reducing the number and costs of experiments. Conclusions: We have developed an optimal and iterative method for selecting features of design such as substrate range, number of measurements and choice of intermediate points. Our novel approach minimises parameter error and costs, and maximises experimental efficiency. It is applicable to many areas of ocular drug design, including receptor-ligand binding and immunoglobulin binding, and should be an important tool in ocular drug discovery.
Resumo:
This paper presents a multicriteria decision-making model for lifespan energy efficiency assessment of intelligent buildings (IBs). The decision-making model called IBAssessor is developed using an analytic network process (ANP) method and a set of lifespan performance indicators for IBs selected by a new quantitative approach called energy-time consumption index (ETI). In order to improve the quality of decision-making, the authors of this paper make use of previous research achievements including a lifespan sustainable business model, the Asian IB Index, and a number of relevant publications. Practitioners can use the IBAssessor ANP model at different stages of an IB lifespan for either engineering or business oriented assessments. Finally, this paper presents an experimental case study to demonstrate how to use IBAssessor ANP model to solve real-world design tasks.
Resumo:
The construction industry with its nature of project delivery is very fragmented in terms of the various processes that encompass design, construction, facilities and assets management. Facilities managers are in the forefront of delivering sustainable assets management and hence further the venture for mitigation and adaptation to climate change. A questionnaire survey was conducted to establish perceptions, level of commitment and knowledge chasm in practising sustainable facilities management (FM). This has significant implications for sustainable design management, especially in a fragmented industry. The majority of questionnaire respondents indicated the importance of sustainability for their organization. Many of them stated that they reported on sustainability as part of their organization annual reporting with energy efficiency, recycling and waste reduction as the main concern for them. The overwhelming barrier for implementing sound, sustainable FM is the lack of consensual understanding and focus of individuals and organizations about sustainability. There is a knowledge chasm regarding practical information on delivering sustainable FM. Sustainability information asymmetry in design, construction and FM processes render any sustainable design as a sentiment and mere design aspiration. Skills and training provision, traditionally offered separately to designers and facilities managers, needs to be re-evaluated. Sustainability education and training should be developed to provide effective structures and processes to apply sustainability throughout the construction and FM industries coherently and as common practice.
Resumo:
According to the Chinese State Council's "Building Energy Efficiency Management Ordinance", a large-scale investigation of energy efficiency (EE) in buildings in contemporary China has been carried out in 22 provincial capitals and major cities in China. The aim of this project is to provide reliable information for drawing up the "Decision on reinforcing building energy efficiency" by the Ministry of Construction of China. The surveyed organizations include government departments, research institutions, property developers, design institutions, construction companies, construction consultancy services companies, facility management departments, financial institutions and those which relate to the business of building energy efficiency. In addition, representatives of the media and residents were also involved. A detailed analysis of the results of the investigation concerning aspects of the cur-rent situation and trends in building energy consumption, energy efficiency strategy and the implementation of energy efficiency measures has been conducted. The investigation supplies essential information to formulate the market entrance policy for new buildings and the refurbishment policy for existing buildings to encourage the development of energy efficient technology.
Resumo:
The People's Republic of China and its 1.3 billion people have experienced a rapid economic growth in the past two decades. China's urbanisation ratio rose from around 20% in the early 1980s to 45% in 2007 [China Urban Research Committee. Green building. Beijing: Chinese Construction Industrial Publish House; 2008. ISBN 978-7-112-09925-2.]. The large volume and rapid speed of building construction rarely have been seen in global development and cause substantial pressure on resources and the environment. Government policy makers and building professionals, including architects, building engineers, project managers and property developers, should play an important role in enhancing the planning, design, construction, operation and maintenance of the building energy efficiency process in forming the sustainable urban development. This paper addresses the emerging issues relating to building energy consumption and building energy efficiency due to the fast urbanisation development in China.
Resumo:
Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.
Resumo:
Procurement is one of major business operations in public service sector. The advance of information and communication technology (ICT) pushes this business operation to increase its efficiency and foster collaborations between the organization and its suppliers. This leads to a shift from the traditional procurement transactions to an e-procurement paradigm. Such change impacts on business process, information management and decision making. E-procurement involves various stakeholders who engage in activities based on different social and cultural practices. Therefore, a design of e-procurement system may involve complex situations analysis. This paper describes an approach of using the problem articulation method to support such analysis. This approach is applied to a case study from UAE.
Resumo:
The aim of this paper is to study the impact of channel state information on the design of cooperative transmission protocols. This is motivated by the fact that the performance gain achieved by cooperative diversity comes at the price of the extra bandwidth resource consumption. Several opportunistic relaying strategies are developed to fully utilize the different types of a priori channel information. The information-theoretic measures such as outage probability and diversity-multiplexing tradeoff are developed for the proposed protocols. The analytical and numerical results demonstrate that the use of such a priori information increases the spectral efficiency of cooperative diversity, especially at low signal-to-noise ratio.
Resumo:
A construction algorithm for multioutput radial basis function (RBF) network modelling is introduced by combining a locally regularised orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximised model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious RBF network model with excellent generalisation performance. The D-optimality design criterion enhances the model efficiency and robustness. A further advantage of the combined approach is that the user only needs to specify a weighting for the D-optimality cost in the combined RBF model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
Resumo:
The note proposes an efficient nonlinear identification algorithm by combining a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximized model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality cost in the combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
Resumo:
New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.
Resumo:
In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.