194 resultados para Desensitization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crosstalk between elements of the sinusoidal vasculature, platelets and hepatic parenchymal cells influences regenerative responses to liver injury and/or resection. Such paracrine interactions include hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), IL-6 and small molecules such as serotonin and nucleotides. CD39 (nucleoside triphosphate diphosphohydrolase-1) is the dominant vascular ectonucleotidase expressed on the luminal surface of endothelial cells and modulates extracellular nucleotide signaling. We have previously shown that integrity of P2-receptors, as maintained by CD39, is required for angiogenesis in Matrigel plugs in vivo and that there is synergism between nucleotide P2-receptor- and growth factor-mediated cell proliferation in vitro. We have now explored effects of CD39 on liver regeneration and vascular endothelial growth factor responses in a standard small animal model of partial hepatectomy. The expression of CD39 on liver sinusoidal endothelial cells (LSEC) is substantially boosted during liver regeneration. This transcriptional upregulation precedes maximal sinusoidal endothelial cell proliferation, noted at day 5-8 in C57BL6 wild type mice. In matched mutant mice null for CD39 (n=14), overall survival is decreased to 71% by day 10. Increased lethality occurs as a consequence of extensive LSEC apoptosis, decreased endothelial proliferation and failure of angiogenesis leading to hepatic infarcts and regenerative failure in mutant mice. This aberrant vascular remodeling is associated with biochemical liver injury, elevated serum levels of VEGF (113.9 vs. 65.5pg/ml, p=0.013), and decreased circulating HGF (0.89 vs. 1.43 ng/ml, p=0.001) in mice null for CD39. In agreement with these observations, wild type LSEC but not CD39 null cultures upregulate HGF expression and secretion in response to exogenous VEGF in vitro. CD39 null LSEC cultures show poor proliferation responses and heightened levels of apoptosis when contrasted to wild type LSEC where agonists of P2Y receptors augment cell proliferation in the presence of growth factors. These observations are associated with features of P2Y-desensitization, normal levels of the receptor tyrosine kinase VEGFR-1 (Flt-1) and decreased expression of VEGFR-2 (FLK/KDR) in CD39 null LSEC cultures. We provide evidence that CD39 and extracellular nucleotides impact upon growth factor responses and tyrosine receptor kinases during LSEC proliferation. We propose that CD39 expression by LSEC might co-ordinate angiogenesis-independent liver protection by facilitating VEGF-induced paracrine release of HGF to promote vascular remodeling in liver regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caring for a spouse with Alzheimer's disease (AD) is associated with overall health decline and impaired cardiovascular functioning. This morbidity may be related to the effects of caregiving stress and impaired coping on beta(2)-adrenergic receptors, which mediate hemodynamic and vascular responses and are important for peripheral blood mononuclear cell (PBMC) trafficking and cytokine production. This study investigated the longitudinal relationship between stress, personal mastery, and beta(2)-adrenergic receptor sensitivity assessed in vitro on PBMC. Over a 5-year study, 115 spousal AD caregivers completed annual assessments of caregiving stress, mastery, and PBMC beta(2)-adrenergic receptor sensitivity, as assessed by in vitro isoproterenol stimulation. Heightened caregiving stress was associated with significantly decreased receptor sensitivity, whereas greater sense of personal mastery was associated with significantly increased receptor sensitivity. These results suggest that increased stress may be associated with a desensitization of beta(2)-receptors, which may contribute to the development of illness among caregivers. However, increased mastery is associated with increased receptor sensitivity, and may therefore serve as a resource factor for improved health in this population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines perceived ethnic discrimination (as opposed to “objective” discrimination). It includes a discussion of definitions of discrimination and attempts to measure it, and a review of findings on the distribution of discrimination experiences among minorities. The aim of the study is to determine the influence of factors that increase the risk of exposure to situations in which discrimination can take place (exposure hypothesis), and those that sensitize perceptions and give rise to different frequencies of subjective feelings of discrimination (sensitization hypothesis). A standardized questionnaire was administered to a random sample of German-born persons of Turkish and Greek origin and Aussiedler (ethnic Germans born in the former Soviet Union) (total N = 301). Minorities of non-German, especially of Turkish origin reported significantly more discrimination than Aussiedler in a set of nineteen everyday situations. A bivariate correlation was found between number of incidents reported and employment status with homemakers reporting the fewest incidents. However, multiple regression analysis yielded no significant effect, thus lending no clear support to the exposure hypothesis. Frequency of contacts with German friends has no effect and seems not to entail an increase in exposure opportunities, but may lead to a desensitization to discrimination due to the erosion of the relevance of ethnic categories. On the other hand, an influence through intra-ethnic contacts clearly occurs, as frequency of contact with co-ethnic friends exerts a strong positive effect on experienced discrimination. A similar effect was found for ethnic self-awareness. The latter finding confirms the sensitization hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionotropic glutamate receptors are important excitatory neurotransmitter receptors in the mammalian central nervous system that have been implicated in a number of neuropathologies such as epilepsy, ischemia, and amyotrophic lateral sclerosis. Glutamate binding to an extracellular ligand binding domain initiates a series of structural changes that leads to the formation of a cation selective transmembrane channel, which consequently closes due to desensitization of the receptor. The crystal structures of the AMPA subtype of the glutamate receptor have been particularly useful in providing initial insight into the conformational changes in the ligand binding domain; however, these structures are limited by crystallographic constraint. To gain a clear picture of how agonist binding is coupled to channel activation and desensitization, it is essential to study changes in the ligand binding domain in a dynamic, physiological state. In this dissertation, a technique called Luminescence Resonance Energy Transfer was used to determine the conformational changes associated with activation and desensitization in a functional AMPA receptor (ÄN*-AMPA) that contains the ligand binding domain and transmembrane segments; ÄN*-AMPA has been modified such that fluorophores can be introduced at specific sites to serve as a readout of cleft closure or to establish intersubunit distances. Previous structural studies of cleft closure of the isolated ligand binding domain in conjunction with functional studies of the full receptor suggest that extent of cleft closure correlates with extent of activation. Here, LRET has been used to show that a similar relationship between cleft closure and activation is observed in the “full length” receptor showing that the isolated ligand binding domain is a good model of the domain in the full length receptor for changes within a subunit. Similar LRET investigations were used to study intersubunit distances specifically to probe conformational changes between subunits within a dimer in the tetrameric receptor. These studies show that the dimer interface is coupled in the open state, and decoupled in the desensitized state, similar to the isolated ligand binding domain crystal structure studies. However, we show that the apo state dimer interface is not pre-formed as in the crystal structure, hence suggesting a mechanism for functional transitions within the receptor based on LRET distances obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The retinoic acid inducible G protein coupled receptor family C group 5 type A (GPRC5A) is expressed preferentially in normal lung tissue but its expression is suppressed in the majority of human non-small cell lung cancer cell lines and tissues. This differential expression has led to the idea that GPRC5A is a potential tumor suppressor. This notion was supported by the finding that mice with a deletion of the Gprc5a gene develop spontaneous lung tumors. However, there are various tumor cell lines and tissue samples, including lung, that exhibit higher GPRC5A expression than normal tissues and some reports by other groups that GPRC5A transfection increased cell growth and colony formation. Obviously, GPRC5A has failed to suppress the development of the tumors and the growth of the cell lines where its expression is not suppressed. Since no mutations were detected in the coding sequence of GPRC5A in 20 NSCLC cell lines, it’s possible that GPRC5A acts as a tumor suppressor in the context of some cells but not in others. Alternatively, we raised the hypothesis that the GPRC5A protein may be inactivated by posttranslational modification(s) such as phosphorylation. It is well established that Serine/Threonine phosphorylation of G protein coupled receptors leads to their desensitization and in a few cases Tyrosine phosphorylation of GPCRs has been linked to internalization. Others reported that GPRC5A can undergo tyrosine phosphorylation in the cytoplasmic domain after treatment of normal human mammary epithelial cells (HMECs) with epidermal growth factor (EGF) or Heregulin. This suggested that GPRC5A is a substrate of EGFR. Therefore, we hypothesized that tyrosine phosphorylation of GPRC5A by activation of EGFR signaling may lead to its inactivation. To test this hypothesis, we transfected human embryo kidney (HEK) 293 cells with GPRC5A and EGFR expression vectors and confirmed that GPRC5A can be tyrosine phosphorylated after activation of EGFR by EGF. Further, we found that EGFR and GPRC5A can interact either directly or through other proteins and that inhibition of the EGFR kinase activity decreased the phosphorylation of GPRA5A and the interaction between GPRC5A and EGFR. In c-terminal of GPRC5A, There are four tyrosine residues Y317, Y320, Y347, Y350. We prepared GPRC5A mutants in which all four tyrosine residues had been replaced by phenylalanine (mutant 4F) or each individual Tyr residue was replaced by Phe and found that Y317 is the major site for EGFR mediated phosphorylation in the HEK293T cell line. We also found that EGF can induce GPRC5A internalization both in H1792 transient and stable cell lines. EGF also partially inactivates the suppressive function of GPRC5A on cell invasion activity and anchorage-independent growth ability of H1792 stable cell lines. These finding support our hypothesis that GPRC5A may be inactivated by posttranslational modification- tyrosine phosphorylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The family of membrane protein called glutamate receptors play an important role in the central nervous system in mediating signaling between neurons. Glutamate receptors are involved in the elaborate game that nerve cells play with each other in order to control movement, memory, and learning. Neurons achieve this communication by rapidly converting electrical signals into chemical signals and then converting them back into electrical signals. To propagate an electrical impulse, neurons in the brain launch bursts of neurotransmitter molecules like glutamate at the junction between neurons, called the synapse. Glutamate receptors are found lodged in the membranes of the post-synaptic neuron. They receive the burst of neurotransmitters and respond by fielding the neurotransmitters and opening ion channels. Glutamate receptors have been implicated in a number of neuropathologies like ischemia, stroke and amyotrophic lateral sclerosis. Specifically, the NMDA subtype of glutamate receptors has been linked to the onset of Alzheimer’s disease and the subsequent degeneration of neuronal cells. While crystal structures of AMPA and kainate subtypes of glutamate receptors have provided valuable information regarding the assembly and mechanism of activation; little is known about the NMDA receptors. Even the basic question of receptor assembly still remains unanswered. Therefore, to gain a clear understanding of how the receptors are assembled and how agonist binding gets translated to channel opening, I have used a technique called Luminescence Resonance Energy Transfer (LRET). LRET offers the unique advantage of tracking large scale conformational changes associated with receptor activation and desensitization. In this dissertation, LRET, in combination with biochemical and electrophysiological studies, were performed on the NMDA receptors to draw a correlation between structure and function. NMDA receptor subtypes GluN1 and GluN2A were modified such that fluorophores could be introduced at specific sites to determine their pattern of assembly. The results indicated that the GluN1 subunits assembled across each other in a diagonal manner to form a functional receptor. Once the subunit arrangement was established, this was used as a model to further examine the mechanism of activation in this subtype of glutamate receptor. Using LRET, the correlation between cleft closure and activation was tested for both the GluN1 and GluN2A subunit of the NMDA receptor in response to agonists of varying efficacies. These investigations revealed that cleft closure plays a major role in the mechanism of activation in the NMDA receptor, similar to the AMPA and kainate subtypes. Therefore, suggesting that the mechanism of activation is conserved across the different subtypes of glutamate receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasticity at the connections between sensory neurons and their follower cells in Aplysia has been used extensively as a model system to examine mechanisms of simple forms of learning, such as sensitization. Sensitization is induced, at least in part, by the transmitter serotonin (5-HT) and expressed in several forms, including facilitation of sensorimotor connections. Spike broadening has been believed to be a key mechanism underlying facilitation of nondepressed synapses. Previously, this broadening was believed to be dependent primarily on cAMP/protein kinase A (PKA)-mediated reduction of a noninactivating, relatively voltage-independent K$\sp{+}$ current termed the S-K$\sp+$ current (I$\sb{\rm K{,}S}$). Recent evidence, however, suggests that 5-HT-induced somatic spike broadening is composed of at least two components: a cAMP-dependent, rapidly developing component and a cAMP-independent, slowly developing component.^ Phorbol esters, activators of protein kinase C (PKC), mimicked the cAMP-independent component of 5-HT-induced broadening. Staurosporine, which inhibits PKC, had little effect on the rapidly developing component of 5-HT-induced broadening, but inhibited significantly the slowly developing component. These results suggest that PKC is involved in the cAMP-independent component of 5-HT-induced broadening. The membrane currents responsible for the slowly developing component of broadening were examined. Activation of PKC mimicked, and partially occluded, 5-HT-induced modulation of membrane currents above 0 mV, where a voltage-dependent K$\sp+$ current (I$\sb{\rm K{,}V}$) is significantly activated. This modulation was complex because it was associated with a reduction in the magnitude of I$\sb{\rm K{,}V}$, as well as a slowing of both activation and inactivation kinetics of I$\sb{\rm K{,}V}$. These results support the hypothesis that PKC modulates I$\sb{\rm K{,}V}$ and that this modulation contributes to the slowly developing component of 5-HT-induced broadening. Based on these results and others, a new scheme for 5-HT-induced spike broadening is proposed in which the modulatory effects are mediated via two second messenger/protein kinase systems converging and diverging on multiple ionic conductances.^ The relationship between spike broadening and synaptic facilitation was also examined. Pharmacological reduction of I$\sb{\rm K{,}V}$ by low concentrations of 4-aminopyridine (4-AP) led to spike broadening and facilitation of the nondepressed sensorimotor connections, indicating that spike broadening via the reduction of I$\sc{K,V}$ can facilitate the synaptic connection. Further analyses, however, revealed that 4-AP-induced facilitation has qualitative differences from 5-HT- and PKC-induced facilitation. These results suggest that 5-HT- and PKC-induced facilitation of nondepressed synapses is mediated, at least in part, by spike-duration independent (SDI) processes. Under certain conditions, the PKC inhibitor, staurosporine, significantly inhibited the 5-HT-induced facilitation of sensorimotor connections.^ Finally, it was found that activation of PKC increased a basal level of cAMP and that PKC caused desensitization of the 5-HT receptor, which may be a possible negative feedback mechanism through which an extracellular ligand, 5-HT, is regulated. These results suggest that these two second messenger/protein kinase pathways can interact in the sensory neuron. Thus, neuronal plasticity that may contribute to learning and memory appears to involve several complex and interactive processes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There have been multiple reports which indicate that variations in $\beta$AR expression affect the V$\sb{\rm max}$ observed for the agonist-dependent activation of adenylylcyclase. This observation has been ignored by most researchers when V$\sb{\rm max}$ values obtained for wild type and mutant receptors are compared. Such an imprecise analysis may lead to erroneous conclusions concerning the ability of a receptor to activate adenylylcyclase. Equations were derived from the Cassel-Selinger model of GTPase activity and Tolkovsky and Levitzki's Collision Coupling model which predict that the EC$\sb{50}$ and V$\sb{\rm max}$ for the activation of adenylylcyclase are a function of receptor number. Experimental results for L cell clones in which either hamster or human $\beta$AR were transfected at varying levels showed that EC$\sb{50}$ decreases and V$\sb{\rm max}$ increases as receptor number increases. Comparison of these results with simulations obtained from the equations describing EC$\sb{50}$ and V$\sb{\rm max}$ showed a close correlation. This documents that the kinetic parameters of adenylylcyclase activation change with the level of receptor expression and relates this phenomenon to a theoretical framework concerning the mechanisms involved in $\beta$AR signal transduction.^ One of the terms used in the equations which expressed the EC$\sb{50}$ and V$\sb{\rm max}$ as a function of receptor number is coupling efficiency, defined as $\rm k\sb1/k\sb{-1}$. Calculation of $\rm k\sb1/k\sb{-1}$ can be accomplished for wild type receptors with the easily measured experimental values of agonist K$\sb{\rm d}$, EC$\sb{50}$ and receptor number. This was demonstrated for hamster $\beta$AR which yielded a coupling efficiency of 0.15 $\pm$ 0.003 and human $\beta$AR which yielded a coupling efficiency of 0.90 $\pm$ 0.031. $\rm k\sb1/k\sb{-1}$ replaces the traditional qualitative evaluation of the ability to activate adenylylcyclase, which utilizes V$\sb{\rm max}$ without correction for variation in receptor number, with a quantitative definition that more accurately describes the ability of $\beta$AR to couple to G$\sb{\rm s}$.^ The equations which express the EC$\sb{50}$ and V$\sb{\rm max}$ for adenylylcyclase activation as a function of receptor number and coupling efficiency were tested to determine whether they could accurately simulate the changes seen in these parameters during desensitization. Data from original desensitization experiments and data from the literature (24,25,52,54,83) were compared to simulated changes in EC$\sb{50}$ and V$\sb{\rm max}$. In a variety of systems the predictions of the equations were consistent with the changes observed in EC$\sb{50}$ and V$\sb{\rm max}$. In addition reductions in the calculated value of $\rm k\sb1/k\sb{-1}$ was shown to correlate well with $\beta$AR phosphorylation and to be minimally affected by sequestration and down-regulation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastrin-releasing peptide (GRP) and other bombesin-like peptides stimulate hormone secretion and cell proliferation by binding to specific G-protein-coupled receptors. Three studies were performed to identify potential mechanisms involved in GRP/bombesin receptor regulation.^ Although bombesin receptors are localized throughout the gastrointestinal tract, few gastrointestinal cell lines are available to study bombesin action. In the first study, the binding and function of bombesin receptors in the human HuTu-80 duodenal cancer cell line were characterized. ($\sp{125}$I-Tyr$\sp4$) bombesin bound with high affinity to a GRP-preferring receptor. Bombesin treatment increased IP$\sb3$ production, but had no effect on cell proliferation. Similar processing of ($\sp{125}$I-Tyr$\sp4$) bombesin and of GRP-receptors was observed in HuTu-80 cells and Swiss 3T3 fibroblasts, a cell line which mitogenically responds to bombesin. Therefore, the lack of a bombesin mitogenic effect in HuTu-80 cells is not due to unusual processing of ($\sp{125}$I-Tyr$\sp4$) bombesin or rapid GRP-receptor down-regulation.^ In the second study, a bombesin antagonist was developed to study the processing and regulatory events after antagonist binding. As previously shown, receptor bound agonist, ($\sp{125}$I-Tyr$\sp4$) bombesin, was rapidly internalized and degraded in chloroquine-sensitive compartments. Interestingly, receptor-bound antagonist, ($\sp{125}$I-D-Tyr$\sp6$) bombesin(6-13)PA was not internalized, but degraded at the cell-surface. In contrast to bombesin, (D-Tyr$\sp6$) bombesin(6-13)PA treatment did not cause receptor internalization. Together these results demonstrate that receptor regulation and receptor-mediated processing of antagonist is different from that of agonist.^ Bombesin receptors undergo acute desensitization. By analogy to other G-protein-coupled receptors, a potential desensitization mechanism may involve receptor phosphorylation. In the final study, $\sp{32}$P-labelled Swiss 3T3 fibroblasts and CHO-mBR1 cells were treated with bombesin and the GRP-receptor was immunoprecipitated. In both cell lines, bombesin treatment markedly stimulated GRP-receptor phosphorylation. Furthermore, bombesin-stimulated GRP-receptor phosphorylation occurred within the same time period as bombesin-stimulated desensitization, demonstrating that these two processes are correlated.^ In conclusion, these studies of GRP-receptor regulation further our understanding of bombesin action and provide insight into G-protein-coupled receptor regulation in general. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intravital imaging has revealed that T cells change their migratory behavior during physiological activation inside lymphoid tissue. Yet, it remains less well investigated how the intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels or other regulatory elements. Here, we used an adjuvant-driven inflammation model to examine how motility patterns corresponded with CCR7, CXCR4, and CXCR5 expression levels on ovalbumin-specific DO11.10 CD4(+) T cells in draining lymph nodes. We found that while CCR7 and CXCR4 surface levels remained essentially unaltered during the first 48-72 h after activation of CD4(+) T cells, their in vitro chemokinetic and directed migratory capacity to the respective ligands, CCL19, CCL21, and CXCL12, was substantially reduced during this time window. Activated T cells recovered from this temporary decrease in motility on day 6 post immunization, coinciding with increased migration to the CXCR5 ligand CXCL13. The transiently impaired CD4(+) T cell motility pattern correlated with increased LFA-1 expression and augmented phosphorylation of the microtubule regulator Stathmin on day 3 post immunization, yet neither microtubule destabilization nor integrin blocking could reverse TCR-imprinted unresponsiveness. Furthermore, protein kinase C (PKC) inhibition did not restore chemotactic activity, ruling out PKC-mediated receptor desensitization as mechanism for reduced migration in activated T cells. Thus, we identify a cell-intrinsic, chemokine receptor level-uncoupled decrease in motility in CD4(+) T cells shortly after activation, coinciding with clonal expansion. The transiently reduced ability to react to chemokinetic and chemotactic stimuli may contribute to the sequestering of activated CD4(+) T cells in reactive peripheral lymph nodes, allowing for integration of costimulatory signals required for full activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lysophosphatidic acid (LPA) is a bioactive phospholipid and binds to its receptors, a family of G protein-coupled receptors (GPCR), which initiates multiple signaling cascades and leads to activation of several transcription factors, including NF-κB. NF-κB critically regulates numerous gene expressions, and is persistently active in many diseases. In our previous studies, we have demonstrated that LPA-induced NF-κB activation is dependent on a novel scaffold protein, CARMA3. However, how CARMA3 is recruited to receptor remains unknown. β-Arrestins are a family of proteins involved in desensitization of GPCR signaling. Additionally, β-arrestins function as signaling adaptor proteins, and mediate multiple signaling pathways. Therefore, we have hypothesized that β-arrestins may link CARMA3 to LPA receptors, and facilitate LPA-induced NF-κB activation. ^ Using β-arrestin-deficient MEFs, we found that β-arrestin 2, but not β-arrestin 1, was required for LPA-induced NF-κB activation. Also, we showed that the expression of NF-κB-dependent cytokines, such as interlukin-6, was impaired in β-arrestin 2-deficient MEFs. Mechanistically, we demonstrated the inducible association of endogenous β-arrestin 2 and CARMA3, and we found the CARD domain of CARMA3 interacted with 60-320 residues of β-arrestin 2. To understand why β-arrestin 2, but not β-arrestin 1, mediated NF-κB activation, we generated β-arrestin mutants. However, some mutants degraded quickly, and the rest did not rescue NF-κB activation in β-arrestin-deficient MEFs, though they had similar binding affinities with CARMA3. Therefore, it indicates that slight changes in residues may determine the different functions of β-arrestins. Moreover, we found β-arrestin 2 deficiency impaired LPA-induced IKK kinase activity, while it did not affect LPA-induced IKKα/β phosphorylation. ^ In summary, our results provide the genetic evidence that β-arrestin 2 serves as a positive regulator in NF-κB signaling pathway by connecting CARMA3 to LPA receptors. Additionally, we demonstrate that β-arrestin 2 is required for IKKα/β activation, but not for the inducible phosphorylation of IKKα/β. Because the signaling pathways around the membrane-proximal region of LPA receptors and GPCRs are quite conserved, our results also suggest a possible link between other GPCRs and CARMA3-mediated NF-κB activation. To fully define the role of β-arrestins in LPA-induced NF-κB signaling pathways will help to identify new drug targets for clinical therapeutics.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most critical aspects of G Protein Coupled Receptors (GPCRs) regulation is their rapid and acute desensitization following agonist stimulation. Phosphorylation of these receptors by GPCR kinases (GRK) is a major mechanism of desensitization. Considerable evidence from studies of rhodopsin kinase and GRK2 suggests there is an allosteric docking site for the receptor distinct from the GRK catalytic site. While the agonist-activated GPCR appears crucial for GRK activation, the molecular details of this interaction remain unclear. Recent studies suggested an important role for the N- and C-termini and domains in the small lobe of the kinase domain in allosteric activation; however, neither the mechanism of action of that site nor the RH domain contributions have been elucidated. To search for the allosteric site, we first indentified evolutionarily conserved sites within the RH and kinase domains presumably deterministic of protein function employing evolutionary trace (ET) methodology and crystal structures of GRK6. Focusing on a conserved cluster centered on helices 3, 9, and 10 in the RH domain, key residues of GRK5 and 6 were targeted for mutagenesis and functional assays. We found that a number of double mutations within helices 3, 9, and 10 and the N-terminus markedly reduced (50–90%) the constitutive phosphorylation of the β-2 Adrenergic Receptor (β2AR) in intact cells and phosphorylation of light-activated rhodopsin (Rho*) in vitro as compared to wild type (WT) GRK5 or 6. Based on these results, we designed peptide mimetics of GRK5 helix 9 both computationally and through chemical modifications with the goal of both confirming the importance of helix 9 and developing a useful inhibitor to disrupt the GPCR-GRK interaction. Several peptides were found to block Rho* phosphorylation by GRK5 including the native helix 9 sequence, Peptide Builder designed-peptide preserving only the key ET residues, and chemically locked helices. Most peptidomimetics showed inhibition of GRK5 activity greater than 80 % with an IC50 of ∼ 30 µM. Alanine scanning of helix 9 has further revealed both essential and non-essential residues for inhibition. Importantly, substitution of Arg 169 by an alanine in the native helix 9-based peptide gave an almost complete inhibition at 30 µM with an IC50 of ∼ 10 µM. In summary we report a previously unrecognized crucial role for the RH domain of GRK5 and 6, and the subsequent identification of a lead peptide inhibitor of protein-protein interaction with potential for specific blockade of GPCR desensitization. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A majority of persons who have sustained spinal cord injury (SCI) develop chronic pain. While most investigators have assumed that the critical mechanisms underlying neuropathic pain after SCI are restricted to the central nervous system (CNS), recent studies showed that contusive SCI results in a large increase in spontaneous activity in primary nociceptors, which is correlated significantly with mechanical allodynia and thermal hyperalgesia. Upregulation of ion channel transient receptor vanilloid 1 (TRPV1) has been observed in the dorsal horn of the spinal cord after SCI, and reduction of SCI-induced hyperalgesia by a TRPV1 antagonist has been claimed. However, the possibility that SCI enhances TRPV1 expression and function in nociceptors has not been tested. I produced contusive SCI at thoracic level T10 in adult, male rats and harvested lumbar (L4/L5) dorsal root ganglia (DRG) from sham-treated and SCI rats 3 days and 1 month after injury, as well as from age-matched naive control rats. Whole-cell patch clamp recordings were made from small (soma diameter <30 >μm) DRG neurons 18 hours after dissociation. Capsaicin-induced currents were significantly increased 1 month, but not 3 days, after SCI compared to neurons from control animals. In addition, Ca2+ transients imaged during capsaicin application were significantly greater 1 month after SCI. Western blot experiments indicated that expression of TRPV1 protein in DRG is also increased 1 month after SCI. A major role for TRPV1 channels in pain-related behavior was indicated by the ability of a specific TRPV1 antagonist, AMG9810, to reverse SCI-induced hypersensitivity of hindlimb withdrawal responses to heat and mechanical stimuli. Similar reversal of behavioral hypersensitivity was induced by intrathecal delivery of oligodeoxynucleotides antisense to TRPV1, which knocked down TRPV1 protein and reduced capsaicin-evoked currents. TRPV1 knockdown also decreased the incidence of spontaneous activity in dissociated nociceptors after SCI. Limited activation of TRPV1 was found to induce prolonged repetitive firing without accommodation or desensitization, and this effect was enhanced by SCI. These data suggest that SCI enhances TRPV1 expression and function in primary nociceptors, increasing the excitability and spontaneous activity of these neurons, thus contributing to chronic pain after SCI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

βarrestins mediate the desensitization of the β2-adrenergic receptor (β2AR) and many other G protein-coupled receptors (GPCRs). Additionally, βarrestins initiate the endocytosis of these receptors via clathrin coated-pits and interact directly with clathrin. Consequently, it has been proposed that βarrestins serve as clathrin adaptors for the GPCR family by linking these receptors to clathrin lattices. AP-2, the heterotetrameric clathrin adaptor protein, has been demonstrated to mediate the internalization of many types of plasma membrane proteins other than GPCRs. AP-2 interacts with the clathrin heavy chain and cytoplasmic domains of receptors such as those for epidermal growth factor and transferrin. In the present study we demonstrate the formation of an agonist-induced multimeric complex containing a GPCR, βarrestin 2, and the β2-adaptin subunit of AP-2. β2-Adaptin binds βarrestin 2 in a yeast two-hybrid assay and coimmunoprecipitates with βarrestins and β2AR in an agonist-dependent manner in HEK-293 cells. Moreover, β2-adaptin translocates from the cytosol to the plasma membrane in response to the β2AR agonist isoproterenol and colocalizes with β2AR in clathrin-coated pits. Finally, expression of βarrestin 2 minigene constructs containing the β2-adaptin interacting region inhibits β2AR endocytosis. These findings point to a role for AP-2 in GPCR endocytosis, and they suggest that AP-2 functions as a clathrin adaptor for the endocytosis of diverse classes of membrane receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heart failure is accompanied by severely impaired β-adrenergic receptor (βAR) function, which includes loss of βAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of βAR function is agonist-stimulated receptor phosphorylation by the βAR kinase (βARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in βAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of βARK1 or the β2AR were mated into a genetic model of murine heart failure (MLP−/−). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP−/− and MLP−/−/β2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP−/−/βARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP−/−/βARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP−/− mice but less than controls. Importantly, heightened βAR desensitization in the MLP−/− mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the βARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal βAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit βARK1 as a novel mode of therapy.