972 resultados para Depth from focus
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Better knowledge of the anthropogenic soils can help create future scenarios for the Amazon region through information that supports the sustainable planning. The aim of this study was to evaluate the spatial variability of soil physical anthropogenic and not anthropogenic in the region of Manipur, AM. In the study area we selected two, one with no anthropogenic soils (native forest) and another with anthropogenic soils (black earth archaeological). In each area, we established a grid measuring 70 x 70 m and the soils were sampled at the points of intersection of the grid with regular spacing of 10 by 10 feet, making a total of 64 sampling points in each landscape. Soil samples were collected at a depth from 0.0 to 0.10 I did the analyzes physical (texture, bulk density, macroporosity, microporososidade, porosity and aggregate stability). Then, the data were subjected to descriptive statistics and geostatistics. It was found that the anthropogenic and non-anthropogenic soils showed different behaviors in relation ace their spatial structures. The spatial variability that prevailed in anthropogenic and non-anthropogenic soil was moderate and weak indicating that these soils are strongly linked to changes in the soil by extrinsic factors. The soil was observed anthropogenic best results for total porosity, microporosity and bulk density, showing superior characteristics compared for agronomic soil not anthropogenic. And the range of values found in the above two areas were used in the mesh, showing greater spatial continuity in these environments.
Resumo:
In order to describe the dynamics of monochromatic surface waves in deep water, we derive a nonlinear and dispersive system of equations for the free surface elevation and the free surface velocity from the Euler equations in infinite depth. From it, and using a multiscale perturbative method, an asymptotic model for small wave steepness ratio is derived. The model is shown to be completely integrable. The Lax pair, the first conserved quantities as well as the symmetries are exhibited. Theoretical and numerical studies reveal that it supports periodic progressive Stokes waves which peak and break in finite time. Comparison between the limiting wave solution of the asymptotic model and classical results is performed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The spatial and temporal variation of microphytobenthic biomass in the nearshore zone of Martel Inlet (King George Island, Antarctica) was estimated at several sites and depths (10-60 m), during three summer periods (1996/1997, 1997/1998, 2004/2005). The mean values were inversely related to the bathymetric gradient: higher ones at 10-20 m depth (136.2 +/- A 112.5 mg Chl a m(-2), 261.7 +/- A 455.9 mg Phaeo m(-2)), intermediate at 20-30 m (55.6 +/- A 39.5 mg Chl a m(-2), 108.8 +/- A 73.0 mg Phaeo m(-2)) and lower ones at 40-60 m (22.7 +/- A 23.7 mg Chl a m(-2), 58.3 +/- A 38.9 mg Phaeo m(-2)). There was also a reduction in the Chl a/Phaeo ratio with depth, from 3.2 +/- A 3.2 (10-20 m) to 0.7 +/- A 1.0 (40-60 m), showing a higher contribution of senescent phytoplankton and/or macroalgae debris at the deeper sites and the limited light flux reaching the bottom. Horizontal differences found in the biomass throughout the inlet could not be clearly related to hydrodynamics or proximity to glaciers, but with sediment characteristics. An inter-summer variation was observed: the first summer presented the highest microphytobenthic biomass apparently related to more hydrodynamic conditions, which causes the deposition of allochthonous material.
Resumo:
A causa della limitata estensione del campo di vista del sistema, con un microscopio ottico tradizionale non è possibile acquisire una singola immagine completamente a fuoco se l’oggetto è caratterizzato da una profondità non trascurabile. Fin dagli anni ’70, il problema dell’estensione della profondità di fuoco è stato ampiamente trattato in letteratura e molti metodi sono stati proposti per superare questo limite. Tuttavia, è molto difficile riuscire a decretare quale metodo risulti essere il migliore in una specifica applicazione, a causa della mancanza di una metrica validata e adatta ad essere utilizzata anche in casi reali, dove generalmente non si ha a disposizione un’immagine di riferimento da considerare come “la verità” (ground truth). L’Universal Quality Index (UQI) è ampiamente utilizzato in letteratura per valutare la qualità dei risultati in processi di elaborazione di immagini. Tuttavia, per poter calcolare questo indice è necessaria una ground truth. In effetti, sono state proposte in letteratura alcune estensioni dell’UQI per valutare il risultato dei metodi di fusione anche senza immagine di riferimento, ma nessuna analisi esaustiva è stata proposta per dimostrare la loro equivalenza con l’UQI standard nel valutare la qualità di un’immagine. In questo lavoro di Tesi, partendo dai limiti dei metodi attualmente utilizzati per l'estensione della profondità di campo di un microscopio, ed esposti in letteratura, per prima cosa è stato proposto un nuovo metodo, basato su approccio spaziale e fondato su analisi locale del segnale appositamente filtrato. Attraverso l’uso di sequenze di immagini sintetiche, delle quali si conosce la ground truth, è stato dimostrato, utilizzando metriche comuni in image processing, che il metodo proposto è in grado di superare le performance dei metodi allo stato dell'arte. In seguito, attraverso una serie di esperimenti dedicati, è stato provato che metriche proposte e ampiamente utilizzate in letteratura come estensione dell'UQI per valutare la qualità delle immagini prodotte da processi di fusione, sebbene dichiarate essere sue estensioni, non sono in grado di effettuare una valutazione quale quella che farebbe l'UQI standard. E’ quindi stato proposto e validato un nuovo approccio di valutazione che si è dimostrato in grado di classificare i metodi di fusione testati così come farebbe l’UQI standard, ma senza richiedere un’immagine di riferimento. Infine, utilizzando sequenze di immagini reali acquisite a differenti profondità di fuoco e l’approccio di valutazione validato, è stato dimostrato che il metodo proposto per l’estensione della profondità di campo risulta sempre migliore, o almeno equivalente, ai metodi allo stato dell’arte.
Resumo:
Nonostante l’oggettiva constatazione dei risultati positivi riscontrati a seguito dei trattamenti radioterapici a cui sono sottoposti i pazienti a cui è stato diagnosticato un tumore, al giorno d’oggi i processi biologici responsabili di tali effetti non sono ancora perfettamente compresi. Inseguendo l’obbiettivo di riuscire a definire tali processi è nata la branca delle scienze biomediche denominata radiobiologia, la quale appunto ha lo scopo di studiare gli effetti provocati dalle radiazioni quando esse interagiscono con un sistema biologico. Di particolare interesse risulta essere lo studio degli effetti dei trattamenti radioterapici nei pazienti con tumore del polmone che rappresentano la principale causa di morte dei paesi industrializzati. Purtroppo per via della scarsa reperibilità di materiale, non è stato finora possibile studiare nel dettaglio gli effetti delle cure radioterapiche nel caso di questo specifico tumore. Grazie alle ricerche di alcuni biologi dell’IRST sono stati creati in-vitro sferoidi composti da cellule staminali e tumorali di polmone, chiamate broncosfere, permettendo così di avere ottimi modelli tridimensionali di tessuto umano allo stato solido su cui eseguire esperimenti al fine di regolare i parametri dei trattamenti radioterapici, al fine di massimizzarne l’effetto di cura. In questo lavoro di Tesi sono state acquisite sequenze di immagini relative a broncosfere sottoposte a differenti tipologie di trattamenti radioterapici. Le immagini acquisite forniscono importanti indicazioni densitomorfometriche che correlate a dati clinoco-biologico potrebbero fornire importanti indicazioni per regolare parametri fondamentali dei trattamenti di cura. Risulta però difficile riuscire a confrontare immagini cellulari di pre e post-trattamento, e poter quindi effettuare delle correlazioni fra modalità di irraggiamento delle cellule e relative caratteristiche morfometriche, in particolare se le immagini non vengono acquisite con medesimi parametri e condizioni di cattura. Inoltre, le dimensioni degli sferoidi cellulari da acquisire risultano essere tipicamente maggiori del parametro depth of focus del sistema e questo implica che non è possibile acquisire una singola immagine completamente a fuoco di essi. Per ovviare a queste problematiche sono state acquisite sequenze di immagini relative allo stesso oggetto ma a diversi piani focali e sono state ricostruite le immagini completamente a fuoco utilizzando algoritmi per l’estensione della profondità di campo. Sono stati quindi formulati due protocolli operativi per fissare i procedimenti legati all’acquisizione di immagini di sferoidi cellulari e renderli ripetibili da più operatori. Il primo prende in esame le metodiche seguite per l’acquisizione di immagini microscopiche di broncosfere per permettere di comparare le immagini ottenute in diverse acquisizioni, con particolare attenzione agli aspetti critici di tale operazione. Il secondo è relativo alla metodica seguita nella archiviazione di tali immagini, seguendo una logica di classificazione basata sul numero di trattamenti subiti dal singolo sferoide. In questo lavoro di Tesi sono stati acquisiti e opportunamente archiviati complessivamente circa 6500 immagini di broncosfere riguardanti un totale di 85 sferoidi. I protocolli elaborati permetteranno di espandere il database contenente le immagini di broncosfere con futuri esperimenti, in modo da disporre di informazioni relative anche ai cambiamenti morfologici subiti dagli sferoidi in seguito a varie tipologie di radiotrattamenti e poter quindi studiare come parametri di frazionamento di dose influenzano la cura. Infine, grazie alle tecniche di elaborazioni delle immagini che stiamo sviluppando sarà inoltre possibile disporre di una ricostruzione della superficie degli sferoidi in tempo reale durante l’acquisizione.
Resumo:
Recent interest in spatial pattern in terrestrial ecosystems has come from an awareness of theintimate relationship between spatial heterogeneity of soil resources and maintenance of plant species diversity. Soil and vegetation can vary spatially inresponse to several state factors of the system. In this study, we examined fine-scale spatial variability of soil nutrients and vascular plant species in contrasting herb-dominated communities (a pasture and an oldfield) to determine degree of spatial dependenceamong soil variables and plant community characteristics within these communities by sampling at 1-m intervals. Each site was divided into 25 1-m 2 plots. Mineral soil was sampled (2-cm diameter, 5-cm depth) from each of four 0.25-m2 quarters and combined into a single composite sample per plot. Soil organic matter was measured as loss-on-ignition. Extractable NH4 and NO3 were determined before and after laboratory incubation to determine potential net N mineralization and nitrification. Cations were analyzed using inductively coupled plasma emission spectrometry. Vegetation was assessed using estimated percent cover. Most soiland plant variables exhibited sharp contrasts betweenpasture and old-field sites, with the old field having significantly higher net N mineralization/nitrification, pH, Ca, Mg, Al, plant cover, and species diversity, richness, and evenness. Multiple regressions revealedthat all plant variables (species diversity, richness,evenness, and cover) were significantly related to soil characteristics (available nitrogen, organic matter,moisture, pH, Ca, and Mg) in the pasture; in the old field only cover was significantly related to soil characteristics (organic matter and moisture). Both sites contrasted sharply with respect to spatial pattern of soil variables, with the old field exhibiting a higher degree of spatial dependence. These results demonstrate that land-use practices can exert profound influence on spatial heterogeneity of both soil properties and vegetation in herb-dominated communities.
Resumo:
The Pennsylvanian Tensleep Sandstone is an eolian and nearshore marine/sabka quartz arenite unit with prominent outcrops along the western Pryor/Bighorn Mountain front east of Red Lodge, MT. Regionally, the formation represents one of the largest ergs in the global geologic record. High permeability makes it an important oil and gas reservoir and aquifer in south central Montana and throughout much of Wyoming. The Tensleep Sandstone’s high percentage of quartz content and grain roundness, due to its eolian origin, makes it a prospective source for natural proppant sand. Three continuous 4-inch cores were obtained during a cooperative project between Montana Tech and industry partners. Using stratigraphic sections, cores, thin sections, and x-ray fluorescence (XRF) analysis, the usefulness and economic feasibility of the Tensleep Sandstone as a minable hydraulic fracture proppant was explored. Usefulness depends on cementation, grain shape, grain size, and depth from surface of the prospective zone. Grain shape and size were determined by thin sections, sieving, and stereomicroscope analysis. Analysis of 20 disaggregated sand samples has shown that as much as 30 percent of the grain sizes fall between 30-50 mesh (medium- to finegrained sand size) and about 45 percent of the grain sizes fall between 70–140 mesh (very fine-grained sand to coarse silt), grain sizes appropriate for some hydraulic fracture operations. Core descriptions and XRF data display the distribution of lithology and cementation. Core descriptions and XRF data display the distribution of lithology and cementation. Elemental (XRF) analyses help to delineate more pure quartz sands from those with grain fractions reflecting fine-grained clastic and evaporitic inputs. The core and nearby stratigraphic sections are used to quantify the amount of overburden and the 3 amount of resource in the area. Initial results show favorable crush strength and useable grain size and shape.
Resumo:
River floodplain soils are sinks and potential sources for toxic trace metals like Cu and Zn. We hypothesize that stable Cu and Zn isotope ratios reflect both the mobilization and the sources of metals. We determined the soil properties, the concentrations and partitioning of Cu and Zn, and variations in δ65Cu and δ66Zn values in a core obtained from an Aquic Udifluvent developed on a freshwater intertidal mudflat of the River Elbe, Germany. The core was sampled at 2 cm intervals to a depth of 34 cm, which corresponds to approximately 9 yr of sedimentation. Elevated concentrations of Cu (up to 320 μg g−1) and Zn (up to 2080 μg g−1) indicated anthropogenic pollution. At the time of sampling the redox conditions changed from oxic (Eh 200 to 400 mV, above 22 cm deep) to strongly anoxic conditions (-100 to -200 mV, below 22 cm deep). The δ65Cu values varied systematically with depth (from -0.02 to 0.16‰) and were correlated with the Fe, C, and N concentrations. Although pre-depositional variations cannot be ruled out, the systematic variation with depth suggests post-sedimentation fractionation of δ65Cu in response to seasonally variable organic matter deposition and redox conditions. In contrast, the δ66ZnIRMM values were uniform (from -0.07 to 0.01‰) throughout the core, indicating that the Zn isotopes did not significantly fractionate after deposition and that the Zn sources were homogeneous throughout the sedimentation.
Resumo:
Aims: Angiographic ectasias and aneurysms in stented segments have been associated with late stent thrombosis. Using optical coherence tomography (OCT), some stented segments show coronary evaginations reminiscent of ectasias. The purpose of this study was to explore, using computational fluid-dynamic (CFD) simulations, whether OCT-detected coronary evaginations can induce local changes in blood flow. Methods and results: OCT-detected evaginations are defined as outward bulges in the luminal vessel contour between struts, with the depth of the bulge exceeding the actual strut thickness. Evaginations can be characterised cross ectionally by depth and along the stented segment by total length. Assuming an ellipsoid shape, we modelled 3-D evaginations with different sizes by varying the depth from 0.2-1.0 mm, and the length from 1-9 mm. For the flow simulation we used average flow velocity data from non-diseased coronary arteries. The change in flow with varying evagination sizes was assessed using a particle tracing test where the particle transit time within the segment with evagination was compared with that of a control vessel. The presence of the evagination caused a delayed particle transit time which increased with the evagination size. The change in flow consisted locally of recirculation within the evagination, as well as flow deceleration due to a larger lumen - seen as a deflection of flow towards the evagination. Conclusions: CFD simulation of 3-D evaginations and blood flow suggests that evaginations affect flow locally, with a flow disturbance that increases with increasing evagination size.
Resumo:
Driven by privacy-related fears, users of Online Social Networks may start to reduce their network activities. This trend can have a negative impact on network sustainability and its business value. Nevertheless, very little is understood about the privacy-related concerns of users and the impact of those concerns on identity performance. To close this gap, we take a systematic view of user privacy concerns on such platforms. Based on insights from focus groups and an empirical study with 210 subjects, we find that (i) Organizational Threats and (ii) Social Threats stemming from the user environment constitute two underlying dimensions of the construct “Privacy Concerns in Online Social Networks”. Using a Structural Equation Model, we examine the impact of the identified dimensions of concern on the Amount, Honesty, and Conscious Control of individual self-disclosure on these sites. We find that users tend to reduce the Amount of information disclosed as a response to their concerns regarding Organizational Threats. Additionally, users become more conscious about the information they reveal as a result of Social Threats. Network providers may want to develop specific mechanisms to alleviate identified user concerns and thereby ensure network sustainability.
Resumo:
The Effingen Member is a low-permeability rock unit of Oxfordian age (ca. 160 Ma) that occurs across northern Switzerland. It comprises sandy calcareous marls and (argillaceous) limestones. This report describes the hydrogeochemistry, mineralogy and supporting physical properties of the Effingen Member in three boreholes in the Jura-Südfuss area: Oftringen, Gösgen and Küttigen, where it is 220–240 m thick. The top of the Effingen Member is at 420, 66 and 32 m depths at the three sites. Core materials are available from Oftringen and Gösgen, whereas information from Küttigen is limited to cuttings, in-situ hydrogeological testing and geophysical logging. Hydrogeological boundaries of the Effingen Member vary between locations. Ground-water flows were identified during drilling at the top (Geissberg Member), but not at the base, of the Effingen Member at Oftringen, at the base (Hauptrogenstein Formation) of the Effingen Member at Gösgen, and in a limestone layer (Gerstenhübel unit) within the Effingen Member at Küttigen. The marls and limestones of the Effingen Member have carbonate contents of 46–91 wt.-% and clay-mineral contents of 5–37 wt.-%. Pyrite contents are up to 1.6 wt.-%, but no sulphate minerals were detected by routine analyses. Clay minerals are predominantly mixed-layer illite-smectite, illite and kaolinite, with sporadic traces of chlorite and smectite. Veins filled with calcite ± celestite occur through the Effingen Member at Oftringen but not at Gösgen or Küttigen. They formed at 50–70 ºC from externally derived fluids, probably of Miocene age. Water contents are 0.7–4.2 wt.-%, corresponding to a water-loss porosity range of 1.9–10.8 vol.-%. Specific surface areas, measured by the BET method, are 2–30 m2/g, correlating with clay-mineral contents. Water activity has been measured and yielded surprisingly low values down to 0.8. These cannot be explained by pore-water salinity alone and include other effects, such as changes in the fabric due to stress release or partial saturation. Observed variations in measurements are not fully understood. Cation exchange capacity (CEC) and exchangeable cation populations have been studied by the Ni-en method. CEC, derived from the consumption of the index cation Ni, is 9–99 meq/kgrock at a solid:liquid ratio of 1, correlating with the clay-mineral content. Cation concentrations in Ni-en extract solutions are in the order Na+≥Ca2+>Mg2+>K+>Sr2+. However, the analytical results from the Ni-en extractions have additional contributions from cations originating from pore water and from mineral dissolution reactions that occurred during extraction, and it was not possible to reliably quantify these contributions. Therefore, in-situ cation populations and selectivity coefficients could not be derived. A suite of methods have been used for characterising the chemical compositions of pore waters in the Effingen Member. Advective displacement was used on one sample from each Oftringen and Gösgen and is the only method that produces results that approach complete hydrochemical compositions. Aqueous extraction was used on core samples from these two boreholes and gives data only for Cl- and, in some cases, Br-. Out-diffusion was used on core samples from Oftringen and similarly gives data for Cl- and Br- only. For both aqueous extraction and out-diffusion, reaction of the experimental water with rock affected concentrations of cations, SO42 and alkalinity in experimental solutions. Another method, centrifugation, failed to extract pore water. Stable isotope ratios (δ18O and δ2H) of pore waters in core samples from Oftringen were analysed by the diffusive exchange method and helium contents of pore water in Oftringen samples were extracted for mass spectrometric analysis by quantitative outgassing of preserved core samples. Several lines of evidence indicate that drillcore samples might not have been fully saturated when opened and subsampled in the laboratory. These include comparisons of water-loss porosities with physical porosities, water-activity measurements, and high contents of dissolved gas as inferred from ground-water samples. There is no clear proof of partial saturation and it is unclear whether this might represent in-situ conditions or is due to exsolution of gas due to the pressure release since drilling. Partial saturation would have no impact on the recalculation of pore-water compositions from aqueous extraction experiments using water-loss porosity data. The largest uncertainty in the pore-water Cl- concentrations recalculated from aqueous extraction and out-diffusion experiments is the magnitude of the anion-accessible fraction of water-loss porosity. General experience of clay-mineral rich formations suggests that the anion-accessible porosity fraction is very often about 0.5 and generally in a range of 0.3 to 0.6 and tends to be inversely correlated with clay-mineral contents. Comparisons of the Cl- concentration in pore water obtained by advective displacement with that recalculated from aqueous extraction of an adjacent core sample suggests a fraction of 0.27 for an Oftringen sample, whereas the same procedure for a Gösgen sample suggests a value of 0.64. The former value for anion-accessible porosity fraction is presumed to be unrepresentative given the local mineralogical heterogeneity at that depth. Through-diffusion experiments with HTO and 36Cl- suggest that the anion-accessible porosity fraction in the Effingen Member at Oftringen and Gösgen is around 0.5. This value is proposed as a typical average for rocks of the Effingen Member, bearing in mind that it varies on a local scale in response to the heterogeneity of lithology and pore-space architecture. The substantial uncertainties associated with the approaches to estimating anion-accessible porosity propagate into the calculated values of in-situ pore-water Cl- concentrations. On the basis of aqueous extraction experiments, and using an anion-accessible porosity fraction of 0.5, Cl- concentrations in the Effingen Member at Oftringen reach a maximum of about 14 g/L in the centre. Cl- decreases upwards and downwards from that, forming a curved depth profile. Cl- contents in the Effingen Member at Gösgen increase with depth from about 3.5 g/L to about 14 g/L at the base of the cored profile (which corresponds to the centre of the formation). Out-diffusion experiments were carried out on four samples from Oftringen, distributed through the Effingen Member. Recalculated Cl- concentrations are similar to those from aqueous extraction for 3 out of the 4 samples, and somewhat lower for one sample. Concentrations of other components, i.e. Na+, K+, Ca2+, Mg2+, Sr2+, SO42- and HCO3- cannot be obtained from the aqueous extraction and out-diffusion experimental data because of mineral dissolution and cation exchange reactions during the experiments. Pore-water pH also is not constrained by those extraction experiments. The only experimental approach to obtain complete pore-water compositions for samples from Oftringen and Gösgen is advective displacement of pore water. The sample from Oftringen used for this experiment is from 445 m depth in the upper part of the Effingen Member and gave eluate with 16.5 g/L Cl- whereas aqueous extraction from a nearby sample indicated about 9 g/L Cl-. The sample from Gösgen used for advective displacement is from 123 m depth in the centre of the Effingen Member sequence and gave eluate with about 9 g/L Cl- whereas aqueous extraction gave 11.5 g/L Cl-. In both cases the pore waters have Na-(Ca)-Cl compositions and SO42- concentrations of about 1.1 g/L. The Gösgen sample has a Br/Cl ratio similar to that of sea water, whereas this ratio is lower for the Oftringen sample. Taking account of uncertainties in the applied experimental approaches, it is reasonable to place an upper limit of ca. 20 g/L on Cl- concentration for pore water in the Effingen Member in this area. There are major discrepancies between pore-water SO42- concentrations inferred from aqueous extraction or out-diffusion experiments and those obtained from advective displacement in both the Oftringen and Gösgen cases. A general conclusion is that all or at least part of the discrepancies are attributable to perturbation of the sulphur system and enhancement of SO42- by sulphate mineral dissolution and possibly minor pyrite oxidation during aqueous extraction and out-diffusion. Therefore, data for SO42- calculated from those pore-water sampling methods are considered not to be representative of in-situ conditions. A reference pore-water composition was defined for the Effingen Member in the Jura Südfuss area. It represents the probable upper limits of Cl- contents and corresponding anion and cation concentrations that are reasonably constrained by experimental data. Except for Cl- and possibly Na+ concentrations, this composition is poorly constrained especially with respect to SO42- and Ca2+ concentrations, and pH and alkalinity. Stable isotope compositions, δ18O and δ2H, of pore waters in the Effingen Member at Oftringen plot to the right of the meteoric water line, suggesting that 18O has been enriched by water-rock exchange, which indicates that the pore waters have a long residence time. A long residence time of pore water is supported by the level of dissolved 4He that has accumulated in pore water of the Effingen Member at Oftringen. This is comparable with, or slightly higher than, the amounts of 4He in the Opalinus Clay at Benken. Ground waters were sampled from flowing zones intersected by boreholes at the three locations. The general interpretation is that pore waters and ground-water solutes may have similar origins in Mesozoic and Cenozoic brackish-marine formations waters, but ground-water solutes have been diluted rather more than pore waters by ingress of Tertiary and Quaternary meteoric waters. The available hydrochemical data for pore waters from the Effingen Member at these three locations in the Jura-Südfuss area suggest that the geochemical system evolved slowly over geological periods of time, in which diffusion was an important mechanism of solute transport. The irregularity of Cl- and δ18O profiles and spatial variability of advective ground-water flows in the Malm-Dogger system suggests that palaeohydrogeological and hydrochemical responses to changing tectonic and surface environmental conditions were complex.