991 resultados para Dependent Differentiation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Basophils constitute a rare leukocyte population known for their effector functions in inflammation and allergy, as well as more recently described immunoregulatory roles. Besides their low frequency, functional analysis of basophils is hindered by a short life span, inefficient ex vivo differentiation protocols, and lack of suitable cell models. A method to produce large quantities of basophils in vitro would facilitate basophil research and constitute a sought-after tool for diagnostic and drug testing purposes. Methods: A method is described to massively expand bone marrow–derived basophils in vitro. Myeloid progenitors are conditionally immortalized using Hoxb8 in the presence of interleukin-3 (IL-3) and outgrowing cell lines selected for their potential to differentiate into basophils upon shutdown of Hoxb8 expression. Results: IL-3-dependent, conditional Hoxb8-immortalized progenitor cell lines can be expanded and maintained in culture for prolonged periods. Upon shutdown of Hoxb8 expression, near-unlimited numbers of mature functional basophils can be differentiated in vitro within six days. The cells are end-differentiated and short-lived and express basophil-specific surface markers and proteases. Upon IgE- as well as C5a-mediated activation, differentiated basophils release granule enzymes and histamine and secrete Th2-type cytokines (IL-4, IL-13) and leukotriene C4. IL-3-deprivation induces apoptosis correlating with upregulation of the BH3-only proteins BCL-2-interacting mediator of cell death (BIM) and p53 upregulated modulator of apoptosis (PUMA) and downregulation of proviral integration site for Moloney murine leukemia virus 1 kinase (PIM-1). Conclusion: A novel method is presented to generate quantitative amounts of mouse basophils in vitro, which moreover allows genetic manipulation of conditionally immortalized progenitors. This approach may represent a useful alternative method to isolating primary basophils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα), but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp). Mice lacking antibodies (JH (-/-)) or activating Fc receptors (FcRγ(-/-)) harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CREB [CRE (cAMP-response element)-binding protein] is an important transcription factor that is differentially regulated in cells of various types. We recently reported that RA (retinoic acid) rapidly activates CREB without using RARs (RA receptors) or RXRs (retinoid X receptors) in NHTBE cells (normal human tracheobronchial epithelial cells). However, little is known about the role of RA in the physiological regulation of CREB expression in the early mucous differentiation of NHTBE cells. In the present study, we report that RA up-regulates CREB gene expression and that, using 5'-serial deletion promoter analysis and mutagenesis analyses, two Sp1 (specificity protein 1)-binding sites located at nt -217 and -150, which flank the transcription initiation site, are essential for RA induction of CREB gene transcription. Furthermore, we found that CREs located at nt -119 and -98 contributed to basal promoter activity. Interestingly, RA also up-regulated Sp1 in a time- and dose-dependent manner. Knockdown of endogenous Sp1 using siRNA (small interfering RNA) decreased RA-induced CREB gene expression. However, the converse was not true: knockdown of CREB using CREB siRNA did not affect RA-induced Sp1 gene expression. We conclude that RA up-regulates CREB gene expression during the early stage of NHTBE cell differentiation and that RA-inducible Sp1 plays a major role in up-regulating human CREB gene expression. This result implies that co-operation of these two transcription factors plays a crucial role in mediating early events of normal mucous cell differentiation of bronchial epithelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular mechanisms controlling bone extracellular matrix (ECM) deposition by differentiated osteoblasts in postnatal life, called hereafter bone formation, are unknown. This contrasts with the growing knowledge about the genetic control of osteoblast differentiation during embryonic development. Cbfa1, a transcriptional activator of osteoblast differentiation during embryonic development, is also expressed in differentiated osteoblasts postnatally. The perinatal lethality occurring in Cbfa1-deficient mice has prevented so far the study of its function after birth. To determine if Cbfa1 plays a role during bone formation we generated transgenic mice overexpressing Cbfa1 DNA-binding domain (DeltaCbfa1) in differentiated osteoblasts only postnatally. DeltaCbfa1 has a higher affinity for DNA than Cbfa1 itself, has no transcriptional activity on its own, and can act in a dominant-negative manner in DNA cotransfection assays. DeltaCbfa1-expressing mice have a normal skeleton at birth but develop an osteopenic phenotype thereafter. Dynamic histomorphometric studies show that this phenotype is caused by a major decrease in the bone formation rate in the face of a normal number of osteoblasts thus indicating that once osteoblasts are differentiated Cbfa1 regulates their function. Molecular analyses reveal that the expression of the genes expressed in osteoblasts and encoding bone ECM proteins is nearly abolished in transgenic mice, and ex vivo assays demonstrated that DeltaCbfa1-expressing osteoblasts were less active than wild-type osteoblasts. We also show that Cbfa1 regulates positively the activity of its own promoter, which has the highest affinity Cbfa1-binding sites characterized. This study demonstrates that beyond its differentiation function Cbfa1 is the first transcriptional activator of bone formation identified to date and illustrates that developmentally important genes control physiological processes postnatally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle differentiation involves sequential events in which proliferating undifferentiated myoblasts withdraw from the cell cycle and fuse to form multinucleated myotubes. The process of fusion is accompanied by the disappearance of proteins associated with cell proliferation and the coordinate induction of a battery of muscle-specific gene products, which includes the muscle isoenzyme of creatine kinase, nicotinic acetylcholine receptor, and contractile proteins such as alpha-actin. The molecular events associated with myogenesis are particularly amenable to experimental analysis because the events which occur in vivo can be recapitulated in vitro using established muscle cell lines. Initiation of myogenic differentiation in vitro can be achieved by removing serum from the culture medium. Myogenesis, therefore, can be considered to be regulated through a repression-type of mechanism by components in serum. The objectives of this project were to identify the components involved in regulation of myogenesis and approach the mechanism(s) whereby these components achieve their regulatory function. Initially, the effects of a series of polypeptide growth factors on myogenesis were examined. Among them TGF$\beta$ and FGF were found to be potent inhibitors of myogenic differentiation which did not affect cell proliferation. The inhibitory effects of these growth factors on differentiation requires their persistent presence in the culture medium. After myoblasts have undergone fusion, they become refractory to the inhibitory effects of TGF$\beta$, FGF, and serum. When fusion is inhibited by the presence of EGTA, a Ca$\sp{2+}$ chelator, muscle-specific genes are expressed reversibly upon removal of inhibitory growth factors. Subsequent exposure of biochemically differentiated cells to serum or TGF$\beta$ leads to down-regulation of muscle-specific genes. Stimulation with serum also leads to reentry of myocytes into the cell cycle, whereas fused myotubes are irreversibly and terminally differentiated. Measurement of levels of TGF$\beta$ receptors reveals that under non-fusing conditions, TGF$\beta$ receptor levels in biochemically differentiated myocytes remained as high as in undifferentiated myoblasts, while during terminal differentiation, TGF$\beta$ receptors decreased at least five-fold. Thus, down-regulation of TGF$\beta$ receptors is coupled to irreversible differentiation, but not reversible differentiation in the absence of fusion. The possible involvement of second messenger systems, such as cAMP and protein kinase C, in the pathway(s) by which TGF$\beta$, FGF, or serum factors transduce their signals from the cell surface to the nucleus was also examined. The results showed that myogenic differentiation is subject to negative regulation through cAMP elevation-dependent and cAMP elevation-independent pathways and that serum mitogens, TGF$\beta$ and FGF inhibit differentiation through a mechanism independent of cAMP-elevation or protein kinase C activation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myogenin is a muscle-specific transcription factor essential for skeletal muscle differentiation. A severe reduction in the number of fused myotubes is seen in myogenin-null mice, and the expression of genes characteristic of differentiated skeletal muscle is reduced. Additionally, sternebrae defects are seen in myogenin-null mice, a secondary defect in the sternal cartilage precursors. Very little is known about the quantitative requirement for myogenin in muscle differentiation and thoracic skeletal development in vivo. In this thesis I describe experiments utilizing a mouse line harboring a hypomorphic allele of myogenin, generated by gene targeting techniques in embryonic stem cells. The nature of the hypomorphism was due to lowered levels of myogenin from this allele. In embryos homozygous for the hypomorphic allele, normal sternum formation and extensive muscle differentiation was observed. However, muscle hypoplasia and reduced muscle-specific gene expression were apparent in these embryos, and the mice were not viable after birth. These results suggest skeletal muscle differentiation is highly sensitive to the absolute amounts of myogenin, and reveal distinct threshold requirements for myogenin in skeletal muscle differentiation, sternum formation, and viability in vivo. The hypomorphic allele was utilized as a genetically sensitized background to identify other components of myogenin-mediated processes. Using a candidate gene approach I crossed null mutations in MEF2C and MRF4 into the hypomorphic background and examined whether these mutations affected muscle differentiation and skeleton formation in the myogenin hypomorph. Although MEF2C mutation did not affect any phenotypes seen in the hypomorphic background, MRF4 was observed to be an essential component of myogenin-mediated processes of thoracic skeletal development. Additionally, the hypomorphic allele was very sensitive to genetic effects, suggesting the existence of mappable genetic modifiers of the hypomorphic allele of myogenin. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relaying a signal across the plasma membrane requires functional connections between the partner molecules. Membrane microdomains or lipid rafts provide an environment in which such specific interactions can take place. The integrity of these sites is often taken for granted when signalling pathways are investigated in cell culture. However, it is well known that smooth muscle and endothelial cells undergo cytoskeletal rearrangements during monolayer culturing. Likewise affected--and with potentially important consequences for signalling events--is the organization of the plasma membrane. The expression levels of three raft markers were massively upregulated, and raft-associated 5'-nucleotidase activity increased in conventional monolayer cultures as compared with a spheroidal coculture model, shown to promote the differentiation of endothelial cells. Our data point to a shift of raft components in monolayer cultures and demonstrate potential advantages of the spheroid coculture system for investigation of raft-mediated signalling events in endothelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm) infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF) into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ) stained positive for CD206 and M-CSF-derived macrophages (M-Mφ) for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most suitable model to study Lm infection of macrophages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present study was to investigate whether serous fluids, blood, cerebrospinal fluid (CSF), and putrefied CSF can be characterized and differentiated in synthetically calculated magnetic resonance (MR) images based on their quantitative T 1, T 2, and proton density (PD) values. Images from 55 postmortem short axis cardiac and 31 axial brain 1.5-T MR examinations were quantified using a quantification sequence. Serous fluids, fluid blood, sedimented blood, blood clots, CSF, and putrefied CSF were analyzed for their mean T 1, T 2, and PD values. Body core temperature was measured during the MRI scans. The fluid-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot as well as in statistical analysis, the quantitative T 1, T 2 and PD values of serous fluids, fluid blood, sedimented blood, blood clots, CSF, and putrefied CSF could be well differentiated from each other. The quantitative T 1 and T 2 values were temperature-dependent. Correction of quantitative values to a temperature of 37 °C resulted in significantly better discrimination between all investigated fluid mediums. We conclude that postmortem 1.5-T MR quantification is feasible to discriminate between blood, serous fluids, CSF, and putrefied CSF. This finding provides a basis for the computer-aided diagnosis and detection of fluids and hemorrhages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RNA binding proteins RBM binding motif protein 38 (RBM38) and DEAD END 1 (DND1) selectively stabilize mRNAs by attenuating RNAse activity or protecting them from micro(mi)RNA-mediated cleavage. Furthermore, both proteins can efficiently stabilize the mRNA of the cell cycle inhibitor p21(CIP1). Since acute myeloid leukemia (AML) differentiation requires cell cycle arrest and RBM38 as well as DND1 have antiproliferative functions, we hypothesized that decreased RBM38 and DND1 expression may contribute to the differentiation block seen in this disease. We first quantified RBM38 and DND1 mRNA expression in clinical AML patient samples and CD34(+) progenitor cells and mature granulocytes from healthy donors. We found significantly lower RBM38 and DND1 mRNA levels in AML blasts and CD34(+) progenitor cells as compared to mature neutrophils from healthy donors. Furthermore, the lowest expression of both RBM38 and DND1 mRNA correlated with t(8;21). In addition, neutrophil differentiation of CD34(+) cells in vitro with G-CSF (granulocyte colony stimulating factor) resulted in a significant increase of RBM38 and DND1 mRNA levels. Similarly, neutrophil differentiation of NB4 acute promyelocytic leukemia (APL) cells was associated with a significant induction of RBM38 and DND1 expression. To address the function of RBM38 and DND1 in neutrophil differentiation, we generated two independent NB4RBM38 as well as DND1 knockdown cell lines. Inhibition of both RBM38 and DND1 mRNA significantly attenuated NB4 differentiation and resulted in decreased p21(CIP1) mRNA expression. Our results clearly indicate that expression of the RNA binding proteins RBM38 and DND1 is repressed in primary AML patients, that neutrophil differentiation is dependent on increased expression of both proteins, and that these proteins have a critical role in regulating p21(CIP1) expression during APL differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin 4 (IL-4) is a pleotropic cytokine affecting a wide range of cell types in both the mouse and the human. These activities include regulation of the growth and differentiation of both T and B lymphocytes. The activities of IL-4 in nonprimate, nonmurine systems are not well established. Herein, we demonstrate in the bovine system that IL-4 upregulates production of IgM, IgG1, and IgE in the presence of a variety of costimulators including anti-IgM, Staphylococcus aureus cowan strain I, and pokeweed mitogen. IgE responses are potentiated by the addition of IL-2 to IL-4. Culture of bovine B lymphocytes with IL-4 in the absence of additional costimulators resulted in the increased surface expression of CD23 (low-affinity Fc epsilon RII), IgM, IL-2R, and MHC class II in a dose-dependent manner. IL-4 alone increased basal levels of proliferation of bulk peripheral blood mononuclear cells but in the presence of Con A inhibited proliferation. In contrast to the activities of IL-4 in the murine system, proliferation of TH1- and TH2-like clones was inhibited in a dose-dependent manner as assessed by antigen-or IL-2-driven in vitro proliferative responses. These observations are consistent with the role of IL-4 as a key player in regulation of both T and B cell responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years, our laboratory has studied the regulatory mechanisms of proliferation and differentiation in epidermal tissues. Our results showed differences in the roles of cyclin dependent-kinases 4 and 6, and the three D-type cyclins, during normal epidermal proliferation and neoplastic development. Thus, to elucidate the role of the different cell cycle regulators, we developed transgenic mice that overexpress CDK4 (K5-CDK4), or their cognate D-type cyclins, in epithelial tissues. The most severe phenotype was observed in K5-CDK4 animals that developed dermal fibrosis, epidermal hyperplasia and hypertrophy. Forced expression of CDK4 in the epidermal basal cell layer increased the malignant conversion of skin papillomas to squamous cell carcinomas (SCC). Contrastingly, lack of CDK4 completely inhibited tumor development, suggesting that CDK4 is required in this process. Biochemical studies demonstrated that p21 Cip1 and p27Kip1 inhibitors are sequestered by CDK4 resulting in indirect activation of Cyclin E/CDK2, implicating the non-catalytic activity of CDK4 in deregulation of the cell cycle progression. ^ It has been proposed that the proliferative and oncogenic role of Myc is linked to its ability to induce the transcription of CDK4, cyclin D1, and cyclin D2 in vitro. Deregulation of Myc oncogene has been found in several human cancers. Also it has been demonstrated that CDK4 has the ability to functionally inactivate the product of the tumor suppressor gene Rb, providing a link between Myc and the CDK4/cyclin D1/pRb/p16 pathway in some malignant tumors. Here, we sought to determine the role of CDK4 as a mediator of Myc activities by developing a Myc overexpressing mouse nullizygous for CDK4. We demonstrated that lack of CDK4 results in reduced keratinocyte proliferation and epidermal thickness in K5-Myc/CDK4-null mice. In addition, complete reversion of tumor development was observed. All together, this work demonstrates that CDK4 acts as an oncogene independent of the D-type cyclin levels and it is an important mediator of the tumorigenesis induced by Myc. In addition, we showed that the sequestering activity of CDK4 is critical for the development of epidermal hyperplasia during normal proliferation, malignant progression from papillomas to squamous cell carcinomas, and tumorigenesis induced by Myc. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current studies were undertaken to examine the effect of retinoic acid (RA)-induced differentiation of the murine embryonal carcinoma cell line, F-9, on the glycosylation of specific cellular glycoproteins and on the expression of two members of the family of endogenous lactoside-binding lectins. It was found that RA-induced differentiation of these cells into cells with the properties of primitive endoderm results in the increased fucosylation of 3 glycoproteins with molecular weights of 175 (gp175), 250 (gp250), and 400 (pg400) kDa. These three fucose-containing glycoproteins can be considered as new markers of differentiation in this system. The increased fucosylation of these glycoproteins preceded the 3-fold increase in fucosyltransferase (FT) activity that was seen upon RA-induced differentiation of these cells, indicating that an increase in fucosyltransferase activity alone cannot explain the increased fucosylation of these glycoproteins.^ The effect of RA and Ch55, a chalcone carboxylic acid with retinoid-like properties, induced differentiation of a variety of murine embryonal carcinoma cell lines on the activities of both FT and sialyltransferase (ST) was examined. The effect of differentiation on the activities of both glycosyltransferases was modulated and most probably is dependent upon the differentiation pathway that is triggered by the retinoids for each of the embryonal carcinoma cell lines.^ Two glycoproteins, Lysosomal Associated Membrane Glycoproteins 1 and 2 (LAMP-1 and LAMP-2) were examined in more detail during the course of RA-induced differentiation of F-9 cells. Both the levels and glycosylation of both glycoproteins are increased following differentiation of these cells. Differentiation results in the increased binding of $\sp{125}$l-labelled L-phytohemagglutinin to bind to LAMP-1 which indicates increased GlcNAc $\beta$1,6 branching of the oligosaccharide side chains.^ We found that RA-induced differentiation of F-9 cells results in the decreased expression of the 34 kDa lectin 24 h after addition of the retinoid to the medium. Additionally, 48 h of RA-treatment results in the increased expression of the 14.5 kDa lectin. By indirect immunofluorescence we were able to colocalize the 14.5 kDa lectin and laminin which suggests that laminin may be a ligand for the lectin in the F-9 cells. (Abstract shortened with permission of author.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human peripheral blood lymphocytes (PBL) cultured for varying lengths of time in IL-2 are able to mediate antibody independent cellular cytotoxicity (AICC) as well as antibody dependent cellular cytotoxicity (ADCC) against a wide range of tumor targets. The objective of our study is to determine the cytotoxic potential of the subset of LAK cells involved in ADCC, the tumor recognition mechanism in ADCC, the kinetics of ADCC mediated by PBL cultured under various conditions and the role of TNF-$\alpha$ in the development and maturation of ADCC effectors in the LAK population.^ The model system in this study for ADCC used a monoclonal antibody 14G2a (IgG2a), that recognizes the GD2 epitope on human melanoma cell line, SK-Mel-1. The target recognition mechanism operative in AICC (traditionally known as lymphokine activated killing or LAK) is an acquired property of these IL-2 activated cells which confers on them the unique ability to distinguish between tumor and normal cells. This recognition probably involves the presence of a trypsin sensitive N-linked glycoprotein epitope on tumor cells. Proteolytic treatment of the tumor cells with trypsin renders them resistant to AICC by PBL cultured in IL-2. However, ADCC is unaffected. This ADCC, mediated by the relatively small population of cells that are positive for the Fc receptor for IgG (FcR), is an indication that this subset of "LAK" cells does not require the trypsin sensitive epitope on tumor cells to mediate killing. Enriching PBL for FcR+ cells markedly enhanced both AICC and ADCC and also reduced the IL-2 requirement of these cells.^ The stoichiometry of Fc receptor (FcR) expression on the cytotoxic effectors does not correlate with ADCC lytic activity. Although FcRs are necessary to mediate ADCC, other factors, appear to regulate the magnitude of cytolytic activity. In order to investigate these putative factors, the kinetics of ADCC development was studied under various conditions (in IL-2 (10u/ml) and 100u/ml), in IL-2(10u/ml) + TNF$\alpha$ (500u/ml) and in TNF-$\alpha$ (500u/ml) alone). Addition of exogenous TNF-$\alpha$ into the four hour cytotoxicity assay did not increase ADCC, nor did anti-TNF antibodies result in inhibition. On the other hand, addition of anti-TNF antibodies to PBL and IL-2 for 24 hours, resulted in a marked inhibition of the ADCC, suggesting that endogenous TNF-$\alpha$ is obligatory for the maturation and differentiation of ADCC effectors. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transforming growth factor β (TGF-β) was found to inhibit differentiation of myogenic cells only when they were grown to high density. Inhibition also occurred when myogenic cells were cocultured with other types of mesenchymal cells but not when they were cocultured with epithelial cells. It is therefore possible that some density-dependent signaling mediates the intracellular response to TGF-β. Within 30 min of treatment, TGF-β induced translocation of MEF2, but not MyoD, myogenin, or p21, to the cytoplasm of myogenic cells grown to high density. Translocation was reversible on withdrawal of TGF-β. By using immune electron microscopy and Western blot analysis on subcellular fractions, MEF2 was shown to be tightly associated with cytoskeleton membrane components. To test whether MEF2 export from the nucleus was causally related to the inhibitory action of TGF-β, we transfected C2C12 myoblasts with MEF2C containing the nuclear localization signal of simian virus 40 large T antigen (nlsSV40). Myogenic cells expressing the chimerical MEF2C/nlsSV40, but not wild-type MEF2C, retained this transcription factor in the nucleus and were resistant to the inhibitory action of TGF-β. We propose a mechanism in which the inhibition of myogenesis by TGF-β is mediated through MEF2 localization to the cytoplasm, thus preventing it from participating in an active transcriptional complex.