1000 resultados para Denture base reline
Resumo:
This study examined the influence of three polymerization cycles (1: heat cure - long cycle; 2: heat cure - short cycle; and 3: microwave activation) on the linear dimensions of three denture base resins, immediately after deflasking, and 30 days after storage in distilled water at 37± 2ºC. The acrylic resins used were: Clássico, Lucitone 550 and Acron MC. The first two resins were submitted to all three polymerization cycles, and the Acron MC resin was cured by microwave activation only. The samples had three marks, and dimensions of 65 mm in length, 10 mm in width and 3 mm in thickness. Twenty-one test specimens were fabricated for each combination of resin and cure cycle, and they were submitted to three linear dimensional evaluations for two positions (A and B). The changes were evaluated using a microscope. The results indicated that all acrylic resins, regardless of the cure cycle, showed increased linear dimension after 30 days of storage in water. The composition of the acrylic resin affected the results more than the cure cycles, and the conventional acrylic resin (Lucitone 550 and Clássico) cured by microwave activation presented similar results when compared with the resin specific for microwave activation.
Resumo:
Purpose: The aim of this study was to evaluate the influence of artificial accelerated aging on dimensional stability of two types of acrylic resins (thermally and chemically activated) submitted to different protocols of storage. Materials and Methods: One hundred specimens were made using a Teflon matrix (1.5cmx0.5mm) with four imprint marks, following the lost-wax casting method. The specimens were divided into ten groups, according to the type of acrylic resin, aging procedure, and storage protocol (30 days). GI: acrylic resins thermally activated, aging, storage in artificial saliva for 16 hours, distilled water for 8 hours; GII: thermal, aging, artificial saliva for 16 hours, dry for 8 hours; GIII: thermal, no aging, artificial saliva for 16 hours, distilled water for 8 hours, GIV: thermal, no aging, artificial saliva for 16 hours, dry for 8 hours; GV: acrylic resins chemically activated, aging, artificial saliva for 16 hours, distilled water for 8 hours; GVI: chemical, aging, artificial saliva for 16 hours, dry for 8 hours; GVII: chemical, no aging, artificial saliva for 16 hours, distilled water for 8 hours; GVIII: chemical, no aging, artificial saliva for 16 hours, dry for 8 hours GIX: thermal, dry for 24 hours; and GX: chemical, dry for 24 hours. All specimens were photographed before and after treatment, and the images were evaluated by software (UTHSCSA-Image Tool) that made distance measurements between the marks in the specimens (mm), calculating the dimensional stability. Data were submitted to statistical analysis (two-way ANOVA, Tukey test, p = 0.05). Results: Statistical analysis showed that the specimens submitted to storage in water presented the largest distance between both axes (major and minor), statistically different (p < 0.05) from control groups. Conclusions: All acrylic resins presented dimensional changes, and the artificial accelerated aging and storage period influenced these alterations.
Resumo:
Purpose: This study evaluated the effect of the incorporation of the antimicrobial monomer methacryloyloxyundecylpyridinium bromide (MUPB) on the hardness, roughness, flexural strength, and color stability of a denture base material. Materials and Methods: Ninety-six disk-shaped (14-mm diameter x 4-mm thick) and 30 rectangular (65 x 10 x 3.3 mm(3)) heat-polymerized acrylic resin specimens were divided into three groups according to the concentration of MUPB (w/w): (A) 0%, (B) 0.3%, (C) 0.6%. Hardness was assessed by a hardness tester equipped with a Vickers diamond penetrator. Flexural strength and surface roughness were tested on a universal testing machine and a surface roughness tester, respectively. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 36 days of immersion in water, coffee, or wine. Variables were analyzed by ANOVA/Tukey HSD test (alpha = 0.05). Results: The following mean results (+/-SD) were obtained for hardness (A: 15.6 +/- 0.6, B: 14.6 +/- 1.7, C: 14.8 +/- 0.8 VHN; ANOVA: p = 0.061), flexural strength (A: 111 +/- 17, B: 105 +/- 12, C: 88 +/- 12 MPa; ANOVA: p = 0.008), and roughness (A: 0.20 +/- 0.11, B: 0.20 +/- 0.11, C: 0.24 +/- 0.08 mu m; ANOVA: p = 0.829). Color changes of immersed specimens were significantly influenced by solutions and time (A: 9.1 +/- 3.1, B: 14.8 +/- 7.5, C: 13.3 +/- 6.1 Delta E; ANOVA: p < 0.05). Conclusions: The incorporation of MUPB affects the mechanical properties of a denture base acrylic resin; however, the only significant change was observed for flexural strength and may not be critical. Color changes were slightly higher when resin containing MUPB was immersed in wine for a prolonged time; however, the difference has debatable clinical relevance.
Resumo:
Objective: The purpose of this in vitro study was to evaluate the antimicrobial activity of acrylic resins containing different percentages of silver and zinc zeolite, and to assess whether the addition of zeolite alters the flexural and impact strength of the resins. Background: The characteristics of acrylic resins support microorganism development that can threaten the health of the dentures user. Material and methods: A microwave-polymerised (Onda-Cryl) and two heat-polymerised (QC20 and Lucitone 550) acrylic resins were used. The materials were handled according to the manufacturers` instructions. Fifty rectangular-shaped specimens (8 x 10 x 4mm) were fabricated from each resin and assigned to 5 groups (n = 10) according to their percentage of Irgaguard B5000 silver-zinc zeolite (0%- control, 2.5%, 5.0%, 7.5% and 10%). Flexural strength and Izod impact strength were evaluated. The antimicrobial activity against two strains of Candida albicans and two strains of Streptococcus mutans was assessed by agar diffusion method. Data were analysed statistically by one-way ANOVA and Tukey`s test at 5% significance level. Results: The addition of 2.5% of Irgaguard B5000 to the materials resulted in antimicrobial activity against all strains. Flexural strength decreased significantly with the addition of 2.5% (QC20 and Lucitone 550) and 5.0% (Onda-Cryl) of Irgaguard B5000. The impact strength decreased significantly with the addition of 2.5% (Lucitone 550) and 5.0% (QC20 and Onda-Cryl) of zeolite. Conclusion: The addition of silver-zinc zeolite to acrylic resins yields antimicrobial activity, but may affect negatively the mechanical properties, depending on the percentage of zeolite.
Resumo:
Despite the large number of studies addressing the effect of microwave polymerization on the properties of acrylic resin, this method has received limited clinical acceptance. This study evaluated the influence of microwave polymerization on the flexural strength of a denture base resin. A conventional heat-polymerized (Classico), a microwave-polymerized (Onda-Cryl) and a autopolymerizing acrylic (Jet) resins were used. Five groups were established, according to polymerization cycles: A, B and C (Onda-Cryl, short cycle - 500W/3 min, long - 90W/13 min + 500W/90 see, and manufacturing microwave cycle - 320W/3 min + OW/3 min + 720W/3 min); T(Classico, water bath cycle - 74 degrees C/9h) and Q (Jet, press chamber cycle - 50 degrees C/15 min at 2 bar). Ten specimens (65 x 10 x 3.3 mm) were prepared for each cycle. The flexural strength of the five groups was measured using a three-point bending test at a cross-head speed of 5 mm/min. Flexural strength values were analyzed by one-way ANOVA and the Tukey's test was performed to identify the groups that were significantly different at 5% level. The microwave-polymerized groups showed the highest means (p<0.05) for flexural strength (MPa) (A = 106.97 +/- 5.31; B = 107.57 +/- 3.99; C = 109.63 +/- 5.19), and there were no significant differences among them. The heat-polymerized group (T) showed the lowest flexural strength means (84.40 +/- 1.68), and differ significantly from all groups. The specimens of a microwavable denture base resin could be polymerized by different microwave cycles without risk of decreasing the flexural strength.
Resumo:
Purpose: The aim of this research was to assess, by means of, the bi-dimensional finite element method, the best implant location in the alveolar edge, through stress distribution and support structure displacement of a distal extension removable partial denture associated with an osseointegrated implant of 10.0 x .75 mm, acting as abutment for the denture base.Methods and Materials: Five models in sagittal cut were used to represent: model A-hemi arch containing natural tooth 33 and the distal alveolar edge; model B-similar to model A, but with a conventional removable partial denture to replace the absent teeth; model C (MC)-similar to the previous one, with an implant in the distal region of the edge under the denture base; model D-similar to MC, with the implant in the central region of the edge; model E-similar to MC, with an implant in the mesial region of the edge. With the aid of the finite element program ANSYS 8.0, the models were loaded with strictly vertical forces of 50 N on each cusp tip. Displacement and von Mises Maps were plotted for visualization of results.Results: The introduction of implant diminished the tendency of intrusion of the removable partial denture in all situations. The maximum stress was observed on implant in all situations. Approximating implant in direction of support teeth was benefit for stress distribution.Conclusion: Model D presented the lowest value for maximum tendency to displacement when compared with those found in the other models; model E demonstrated better relief with regard to demand from the abutment tooth; locating the implant near of the abutment tooth influenced positively the distribution of stresses on the analyzed structures.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Statement of the problem. In selecting a disinfectant for dental prostheses, compatibility between the disinfectant and the type of denture base material must be considered to avoid adverse effects on the hardness of the acrylic resin.Purpose. This study investigated the hardness of 2 denture base resins after disinfection and long-term water immersion.Material and methods. Thirty-two disk-shaped specimens (13 mm in diameter and 8 mm thick) were fabricated from each resin (Lucitone 550 and QC-20), polished, stored in water at 37degreesC for 48 hours, and submitted to hardness tests (Vickers hardness number [VHN]) before disinfection. Disinfection methods included scrubbing with 4% chlorhexidine gluconate for 1 minute, immersion for 10 minutes in I of the tested disinfectant Solutions (n=8) (3.78% sodium perborate, 4% chlorhexidine gluconate, or 1% sodium hypochorite), and immersion in water for 3 minutes. The disinfection procedures were repeated 4 times, and 12 hardness measurements were made on each specimen. Control specimens (not disinfected) were stored in water for 56 minutes. Hardness tests (VHN) were also performed after 15, 30, 60, 90, and 120 days of storage in water. Statistical analyses of data were conducted with a repeated measures 3-way analysis of variance (ANOVA) and Tukey post-hoc test (alpha=.05).Results. Mean values +/- SD for Lucitone 550 (16.52 +/- 0.94 VHN) and QC-20 (9.61 +/- 0.62 VHN) demonstrated a significant (P<.05) decrease in hardness after disinfection, regardless of material and disinfectant solutions used (Lucitone 550: 15.25 +/- 0.74; QC-20: 8.09 +/- 0.39). However, this effect was reversed after 15 days of storage in water. Both materials exhibited a continuous increase (P<.05) in hardness values for up to 60 days of water storage, after which no significant change was observed.Conclusion. Within the limitations of this in vitro study, QC-20 and Lucitone 550 specimens exhibited significantly lower hardness values after disinfection regardless of the disinfectant solution used.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: To evaluate the effect of water storage time on the cytotoxicity of soft liners.Methods: Sample discs of soft liners Dentusoft, Dentuflex, Trusoft, Ufi-Gel-P and denture base acrylic resin Lucitone-550 were prepared and divided into four groups: GN: No treatment, G24: Stored in water at 37 degrees C for 24 h; G48: Stored in water at 37 degrees C for 48 h, GHW: Immersed in water at 55 degrees C for 10 min. To analyse the cytotoxic effect, three samples of each group were placed in tubes with Dubelcco's Modified Eagle Mediums and incubated at 37 degrees C for 24 h. During this period, the toxic substances were leached to the culture medium. The cytotoxicity was analysed quantitatively by the incorporation of radioactivity H-3-thymidine checking the number of viable cells (synthesis of DNA). The data were statistically analysed using two-way ANOVA and Tukey's honestly significant difference tests (alpha = 0.05).Results: Treatments did not reduce the cytotoxicity effect of the soft liners (p > 0.05). It was found that Ufi-Gel-P had a non-cytotoxic effect, Trusoft had a slightly cytotoxic effect, Dentuflex had a moderated cytotoxic effect, Dentusoft alternated between slightly and non-cytotoxic effect, and Lucitone-550 had non-cytotoxic effect when stored in water for 48 h.Conclusion: The effect of water storage and the heat treatment did not reduce the cytotoxicity of the soft liners.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This investigation evaluated the effectiveness of an infection control protocol for cleansing and disinfecting removable dental prostheses. Sixty-four dentures were rubbed with sterile cotton swab immediately after they had been taken from patients' mouths. Samples were individually placed in the culture medium and immediately incubated at 37 +/- 2 degreesC. The dentures were scrubbed for 1 min with 4% chlorhexidine, rinsed for 1 min in sterile water and placed for 10 min in one of the following immersion solutions: 4% chlorhexidine gluconate, 1% sodium hypochlorite, Biocide (iodophors) and Amosan (alkaline peroxide). After the disinfection procedures, the dentures were immersed in sterile water for 3 min, reswabbed and the samples were incubated. All samples obtained in the initial culture were contaminated with micro-organisms. All the lower dentures immersed in Biocide showed positive growth, and the upper dentures were positive for growth in six of eight dentures. The 4% chlorhexidine gluconate, 1% sodium hypochlorite and Amosan solutions have been proved effective to reduce the growth of the micro-organisms in the 10 min immersion period. The protocol evaluated in this study seems to be a viable method to prevent cross-contamination between dental personnel and patients.
Resumo:
Purpose: This study evaluated the influence of polymerization cycle and thickness of maxillary complete denture bases on the porosity of acrylic resin. Materials and Methods: Two heat-activated denture base resins - one conventional (Clássico) and one designed for microwave polymerization (Onda-Cryl) - were used. Four groups were established, according to polymerization cycles: A (Onda-Cryl, short microwave cycle), B (Onda-Cryl, long microwave cycle), C (Onda-Cryl, manufacturing microwave cycle), and T (Clássico, water bath). Porosity was evaluated for different thicknesses (2.0, 3.5, and 5.0 mm; thicknesses I, II, and III, respectively) by measurement of the specimen volume before and after its immersion in water. The percent porosity data were submitted to Kruskal-Wallis for comparison among the groups. Results: The Kruskal-Wallis test detected that the combinations of the different cycles and thicknesses showed significant differences, and the mean ranks of percent porosity showed differences only in the thinnest (2.0 mm) microwave-polymerized specimens (A = 53.55, B = 40.80, and C = 90.70). Thickness did not affect the results for cycle T (I = 96.15, II = 70.20, and III = 82.70), because porosity values were similar in the three thicknesses. Conclusions: Microwave polymerization cycles and the specimen thickness of acrylic resin influenced porosity. Porosity differences were not observed in the polymerized resin bases in the water bath cycle for any thickness. © 2007 by The American College of Prosthodontists.
Resumo:
Purpose: The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. Materials and Methods: Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p < 0.05). Results: C. albicans biofilm formation was significantly influenced by the films (p < 0.00001), reducing the number of cfu, while not affecting the roughness parameters (p > 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). Conclusion: Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users. © 2013 by the American College of Prosthodontists.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)