975 resultados para Density value
Resumo:
The total thermoplastics pipe market in west Europe is estimated at 900,000 metric tonnes for 1977 and is projected to grow to some 1.3 million tonnes of predominantly PVC and polyolefins pipe by 1985. By that time, polyethylene for gas distribution pipe and fittings will represent some 30% of the total polyethylene pipe market. The performance characteristics of a high density polyethylene are significantly influenced by both molecular weight and type of comonomer; the major influences being in the long-term hoop stress resistance and the environmental stress cracking resistance. Minor amounts of hexene-1 are more effective than comonomers lower in the homologous series, although there is some sacrifice of density related properties. A synergistic improvement is obtained by combining molecular weight increase with copolymerisation. The Long-term design strength of polyethylene copolymers can be determined from hoop stress measurement at elevated temperatures and by means of a separation factor of approximate value 22, extrapolation can be made to room temperature performance for a water environment. A polyethylene of black composition has a sufficiently improved performance over yellow pigmented pipe to cast doubts on the validity of internationally specifying yellow coded pipe for gas distribution service. The chemical environment (condensate formation) that can exist in natural gas distribution networks has a deleterious effect on the pipe performance the reduction amounting to at least two decades in log time. Desorption of such condensate is very slow and the influence of the more aggressive aromatic components is to lead to premature stress cracking. For natural gas distribution purposes, the design stress rating should be 39 Kg/cm2 for polyethylenes in the molecular weight range of 150 - 200,000 and 55 Kg/cm2 for higher molecular weight materials.
Resumo:
The capacity of epifauna to control algal proliferation following nutrient input depends on responses of both grazers and upper trophic level consumers to enrichment. We examined the responses of Thalassia testudinum (turtle grass) epifaunal assemblages to nutrient enrichment at two sites in Florida Bay with varying levels of phosphorus limitation. We compared epifaunal density, biomass, and species diversity in 2 m2 plots that had either ambient nutrient concentrations or had been enriched with nitrogen and phosphorus for 6 months. At the severely P-limited site, total epifaunal density and biomass were two times higher in enriched than in unenriched plots. Caridean shrimp, grazing isopods, and gammarid amphipods accounted for much of the increase in density; brachyuran crabs, primary predatory fish, and detritivorous sea cucumbers accounted for most of the increase in biomass. At the less P-limited site, total epifaunal density and biomass were not affected by nutrient addition, although there were more caridean shrimp and higher brachyuran crab and pink shrimp biomass in enriched plots. At both sites, some variation in epifaunal density and biomass was explained by features of the macrophyte canopy, such as T. testudinum and Halodule wrightii percent cover, suggesting that enrichment may change the refuge value of the macrophyte canopy for epifauna. Additional variation in epifaunal density and biomass was explained by epiphyte pigment concentrations, suggesting that enrichment may change the microalgal food resources that support grazing epifauna. Increased epifaunal density in enriched plots suggests that grazers may be able to control epiphytic algal proliferation following moderate nutrient input to Florida Bay.
Resumo:
At the jamming transition, amorphous packings are known to display anomalous vibrational modes with a density of states (DOS) that remains constant at low frequency. The scaling of the DOS at higher packing fractions remains, however, unclear. One might expect to find a simple Debye scaling, but recent results from effective medium theory and the exact solution of mean-field models both predict an anomalous, non-Debye scaling. Being mean-field in nature, however, these solutions are only strictly valid in the limit of infinite spatial dimension, and it is unclear what value they have for finite-dimensional systems. Here, we study packings of soft spheres in dimensions 3 through 7 and find, away from jamming, a universal non-Debye scaling of the DOS that is consistent with the mean-field predictions. We also consider how the soft mode participation ratio evolves as dimension increases.
Resumo:
Peat and net carbon accumulation rates in two sub-arctic peat plateaus of west-central Canada have been studied through geochemical analyses and accelerator mass spectrometry (AMS) radiocarbon dating. The peatland sites started to develop around 6600-5900 cal. yr BP and the peat plateau stages are characterized by Sphagnum fuscum peat alternating with rootlet layers. The long-term peat and net carbon accumulation rates for both profiles are 0.30-0.31 mm/yr and 12.5-12.7 gC/m**2/yr, respectively. These values reflect very slow peat accumulation (0.04-0.09 mm/yr) and net carbon accumulation (3.7-5.2 gC/m**2/yr) in the top rootlet layers. Extensive AMS radiocarbon dating of one profile shows that accumulation rates are variable depending on peat plateau stage. Peat accumulation rates are up to six times higher and net carbon accumulation rates up to four times higher in S. fuscum than in rootlet stages. Local fires represented by charcoal remains in some of the rootlet layers result in very low accumulation rates. High C/N ratios throughout most of the peat profiles suggest low degrees of decomposition due to stable permafrost conditions. Hence, original peat accretion has remained largely unaltered, except in the initial stages of peatland development when permafrost was not yet present.
Resumo:
The dominant model of atmospheric circulation posits that hot air rises, creating horizontal winds. A second major driver has recently been proposed by Makarieva and Gorshkov in their biotic pump theory (BPT), which suggests that evapotranspiration from natural closed-canopy forests causes intense condensation, and hence winds from ocean to land. Critics of the BPT argue that air movement to fill the partial vacuum caused by condensation is always isotropic, and therefore causes no net air movement (Bunyard, 2015, hdl:11232/397). This paper explores the physics of water condensation under mild atmospheric conditions, within a purpose-designed square-section 4.8 m-tall closed-system structure. Two enclosed vertical columns are connected at top and bottom by two horizontal tunnels, around which 19.5 m**3 of atmospheric air can circulate freely, allowing rotary airflows in either direction. This air can be cooled and/or warmed by refrigeration pipes and a heating mat, and changes in airflow, temperature, humidity and barometric pressure measured in real time. The study investigates whether the "hot-air-rises" or an implosive condensation model can better explain the results of more than 100 experiments. The data show a highly significant correlation (R2 >0.96, p value <0.001) between observed airflows and partial pressure changes from condensation. While the kinetic energy of the refrigerated air falls short of that required in bringing about observed airflows by a factor of at least 30, less than a tenth of the potential kinetic energy from condensation is shown to be sufficient. The assumption that condensation of water vapour is always isotropic is therefore incorrect. Condensation can be anisotropic, and in the laboratory does cause sustained airflow.
Resumo:
The subduction of oceanic plates regulates crustal growth, influences arc volcanism, and refertilizes the mantle. Continental growth occurs by subduction of crustal material (seawater components, marine sediments, and basaltic crust). The geochemical and physical evolution of the Earth's crust depends, in large part, on the fate of subducted material at convergent margins (Armstrong, 1968, doi:10.1029/RG006i002p00175; Karig and Kay, 1981, 10.1098/rsta.1981.0108). The crustal material on the downgoing plate is recycled to various levels in the subduction zone. The recycling process that takes place in the "Subduction Factory" is difficult to observe directly but is clearly illuminated using chemical tracers. Von Huene and Scholl (1991, doi:10.1029/91RG00969) and Plank and Langmuir (1993, doi:10.1038/362739a0) preliminarily calculated a large flux of subducted materials. By mass balancing the chemical tracers and measuring the fractionations that occur between them, the Subduction Factory work and the effect on the Earth's evolution can be estimated. In order to elucidate this mass balance, Ocean Drilling Program Leg 185 drilled two deepwater shales into the oceanic crust situated in the Mariana-Izu Trenches and recovered core samples of incoming oceanic crust. The calculations of mass circulation in the subduction zone, however, did not take into account the mass transfer properties within subducted oceanic crust, although the dewatering fluid and diffused ions may play an important role in various activities such as seismogeneity, serpentine diapiring, and arc volcanism. Thus, this paper focuses on the quantitative measurements of the physical and mass transfer properties of subducted oceanic crust.
Resumo:
Context. In February-March 2014, the MAGIC telescopes observed the high-frequency peaked BL Lac 1ES 1011+496 (z=0.212) in flaring state at very-high energy (VHE, E>100GeV). The flux reached a level more than 10 times higher than any previously recorded flaring state of the source. Aims. Description of the characteristics of the flare presenting the light curve and the spectral parameters of the night-wise spectra and the average spectrum of the whole period. From these data we aim at detecting the imprint of the Extragalactic Background Light (EBL) in the VHE spectrum of the source, in order to constrain its intensity in the optical band. Methods. We analyzed the gamma-ray data from the MAGIC telescopes using the standard MAGIC software for the production of the light curve and the spectra. For the constraining of the EBL we implement the method developed by the H.E.S.S. collaboration in which the intrinsic energy spectrum of the source is modeled with a simple function (< 4 parameters), and the EBL-induced optical depth is calculated using a template EBL model. The likelihood of the observed spectrum is then maximized, including a normalization factor for the EBL opacity among the free parameters. Results. The collected data allowed us to describe the flux changes night by night and also to produce di_erential energy spectra for all nights of the observed period. The estimated intrinsic spectra of all the nights could be fitted by power-law functions. Evaluating the changes in the fit parameters we conclude that the spectral shape for most of the nights were compatible, regardless of the flux level, which enabled us to produce an average spectrum from which the EBL imprint could be constrained. The likelihood ratio test shows that the model with an EBL density 1:07 (-0.20,+0.24)stat+sys, relative to the one in the tested EBL template (Domínguez et al. 2011), is preferred at the 4:6 σ level to the no-EBL hypothesis, with the assumption that the intrinsic source spectrum can be modeled as a log-parabola. This would translate into a constraint of the EBL density in the wavelength range [0.24 μm,4.25 μm], with a peak value at 1.4 μm of λF_ = 12:27^(+2:75)_ (-2:29) nW m^(-2) sr^(-1), including systematics.
Resumo:
The effects of plant density and the number of emitters per Styrofoam box on plant growth and nitrate (NO3-) concentration were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrate and were grown during winter in an unheated greenhouse with no supplemental lighting. The experiment was carried out with four treatments, including two plant densities (160 and 280 plants/m2) and two number of emitters per Styrofoam box (4 and 8 emitters). Each planting box was irrigated daily and fertigated with a complete nutrient solution. Shoot dry weight was not affected by plant density. However, yield increased with plant density and emitter number. Leaf-blade NO3- concentration was not affected by the interaction between plant density and number of emitters, but petioles NO3- concentration was greater in treatment with 160 plants/m2 and 8 emitters. Although leaf-blade NO3- concentration was not affected by plant density, it decreased with the number of emitters. On the other hand, petiole NO3- concentration was not affected by plant density or number of emitters. Leaf-blade NO3- concentration ranged from 3.2 to 4.1 mg/g fresh weight, occurring the highest value in the treatment with 280 plants/m2 and 4 emitters. Petiole NO3- concentration ranged from 3.5 to 5.3 mg/g fresh weight, values that were higher than allowed by EU regulation.
Resumo:
The impact of different irrigation scheduling regimes on the water use, yield and water productivity from a high-density olive grove cv. Cobrançosa in southern Portugal was assessed during the irrigation seasons of 2011, 2012, 2013 and 2014. The experiments were conducted in a commercial olive orchard at the Herdade Álamo de Cima, near Évora (38o 29' 49.44'' N, 7o 45' 8.83'' W; alt. 75 m) in southern Alentejo, Portugal. The orchard was established with 10-year old Cobrançosa trees in grids of 8.0 x 4.2 m (300 trees ha-1) in the E-W direction, and experiments conducted on a shallow sandy loam Regosoil Haplic soil. From mid-May to the end of September the orchard was irrigated and three plots were subjected to one of two irrigation treatments: a control treatment A, irrigated to replace 100% ETc, a moderate deficit irrigation treatment B irrigated to 70% of ETc, and a more severe deficit irrigation treatment C that provided for approximately 50% of ETc. Daily tree transpiration rates were obtained by continuously monitoring of sap flow in representative trees per treatment. Among the irrigated treatments, water use efficiency (WUE, ratio of water used to irrigation- water applied) of treatment C was the highest, with a value of 0.89, being treatment B slightly lower, with a WUE of 0.76. Olive harvest for 2012 was an exceptional “on year”. Bearing yields showed contrasting differences within years where an “on year” was followed by an “off year”. In 2011 and 2012 treatment B yields were 41 and 50% higher than treatment C, respectively. In 2013 treatment B yield was 45% higher than yield of the fully irrigated treatment A, and treatment C showed practically the same yield than treatment A. In the “on year” of 2014 treatment B averaged 48% higher yield than treatment C. Treatment B farm irrigation water productivity (WPI-Farm, ratio of yield to water applied) was the highest among all treatments. Treatment A showed the lowest conversion efficiency of all treatments, indicating treatment B as the adequate deficit irrigation treatment for our Cobrançosa orchard
Resumo:
Montados form a heterogeneous landscape of wooded matrix dominated by cork and/or holm oak with open areas characterized by fuzzy boundaries. Montado supports a high biological diversity associated to low intensity management and a landscape diversity provided by a continuous gradient of land cover. Among other features this permits the classification of montados as a High Nature Value (HNV) system. We assessed the role of birds as HNV indicators for montado, and tested several bird groups—farmland, edge, forest generalists and forest specialists species; and some universal indicators such as species conservation status, Shannon’s diversity index and species richness. Our study areas covered the North–South distribution of cork oak in Portugal, and we surveyed the breeding bird communities across 117 sampling sites. In addition to variables related to management and sanitary status, we considered variables that characterize the landscape heterogeneity inside the montado—trees and shrub density and richness of woody vegetation. Our results suggest that specific bird guilds can be used as HNV indicators of particular typologies of montado, and highlight the need to develop an indicator that could be transversally applied to all types of montado.
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model