762 resultados para Degenerating Hyperbolic Manifolds
Resumo:
We show that if N, an open connected n-manifold with finitely generated fundamental group, is C-2 foliated by closed planes, then pi(1)(N) is a free group. This implies that if pi(1)(N) has an abelian subgroup of rank greater than one, then F has at least a nonclosed leaf. Next, we show that if N is three dimensional with fundamental group abelian of rank greater than one, then N is homeomorphic to T-2 x R. Furthermore, in this case we give a complete description of the foliation.
Resumo:
The main goal of this paper is to derive long time estimates of the energy for the higher order hyperbolic equations with time-dependent coefficients. in particular, we estimate the energy in the hyperbolic zone of the extended phase space by means of a function f (t) which depends on the principal part and on the coefficients of the terms of order m - 1. Then we look for sufficient conditions that guarantee the same energy estimate from above in all the extended phase space. We call this class of estimates hyperbolic-like since the energy behavior is deeply depending on the hyperbolic structure of the equation. In some cases, these estimates produce a dissipative effect on the energy. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this paper we study complete maximal spacelike hypersurfaces in anti-de Sitter space H-1(n+1) with either constant scalar curvature or constant non-zero Gauss-Kronecker curvature. We characterize the hyperbolic cylinders H-m(c(1)) x Hn-m(c(2)), 1 <= m <= n - 1, as the only such hypersurfaces with (n - 1) principal curvatures with the same sign everywhere. In particular we prove that a complete maximal spacelike hypersurface in H-1(5) with negative constant Gauss-Kronecker curvature is isometric to H-1(c(1)) x H-3(c(2)). (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We study the coincidence theory of maps between two manifolds of the same dimension from an axiomatic viewpoint. First we look at coincidences of maps between manifolds where one of the maps is orientation true, and give a set of axioms such that characterizes the local index (which is an integer valued function). Then we consider coincidence theory for arbitrary pairs of maps between two manifolds. Similarly we provide a set of axioms which characterize the local index, which in this case is a function with values in Z circle plus Z(2). We also show in each setting that the group of values for the index (either Z or Z circle plus Z(2)) is determined by the axioms. Finally, for the general case of coincidence theory for arbitrary pairs of maps between two manifolds we provide a set of axioms which characterize the local Reidemeister trace which is an element of an abelian group which depends on the pair of functions. These results extend known results for coincidences between orientable differentiable manifolds. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A dynamical characterization of the stability boundary for a fairly large class of nonlinear autonomous dynamical systems is developed in this paper. This characterization generalizes the existing results by allowing the existence of saddle-node equilibrium points on the stability boundary. The stability boundary of an asymptotically stable equilibrium point is shown to consist of the stable manifolds of the hyperbolic equilibrium points on the stability boundary and the stable, stable center and center manifolds of the saddle-node equilibrium points on the stability boundary.
Resumo:
In questa tesi abbiamo studiato la quantizzazione di una teoria di gauge di forme differenziali su spazi complessi dotati di una metrica di Kaehler. La particolarità di queste teorie risiede nel fatto che esse presentano invarianze di gauge riducibili, in altre parole non indipendenti tra loro. L'invarianza sotto trasformazioni di gauge rappresenta uno dei pilastri della moderna comprensione del mondo fisico. La caratteristica principale di tali teorie è che non tutte le variabili sono effettivamente presenti nella dinamica e alcune risultano essere ausiliarie. Il motivo per cui si preferisce adottare questo punto di vista è spesso il fatto che tali teorie risultano essere manifestamente covarianti sotto importanti gruppi di simmetria come il gruppo di Lorentz. Uno dei metodi più usati nella quantizzazione delle teorie di campo con simmetrie di gauge, richiede l'introduzione di campi non fisici detti ghosts e di una simmetria globale e fermionica che sostituisce l'iniziale invarianza locale di gauge, la simmetria BRST. Nella presente tesi abbiamo scelto di utilizzare uno dei più moderni formalismi per il trattamento delle teorie di gauge: il formalismo BRST Lagrangiano di Batalin-Vilkovisky. Questo metodo prevede l'introduzione di ghosts per ogni grado di riducibilità delle trasformazioni di gauge e di opportuni “antifields" associati a ogni campo precedentemente introdotto. Questo formalismo ci ha permesso di arrivare direttamente a una completa formulazione in termini di path integral della teoria quantistica delle (p,0)-forme. In particolare esso permette di dedurre correttamente la struttura dei ghost della teoria e la simmetria BRST associata. Per ottenere questa struttura è richiesta necessariamente una procedura di gauge fixing per eliminare completamente l'invarianza sotto trasformazioni di gauge. Tale procedura prevede l'eliminazione degli antifields in favore dei campi originali e dei ghosts e permette di implementare, direttamente nel path integral condizioni di gauge fixing covarianti necessari per definire correttamente i propagatori della teoria. Nell'ultima parte abbiamo presentato un’espansione dell’azione efficace (euclidea) che permette di studiare le divergenze della teoria. In particolare abbiamo calcolato i primi coefficienti di tale espansione (coefficienti di Seeley-DeWitt) tramite la tecnica dell'heat kernel. Questo calcolo ha tenuto conto dell'eventuale accoppiamento a una metrica di background cosi come di un possibile ulteriore accoppiamento alla traccia della connessione associata alla metrica.
Resumo:
The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.
Resumo:
In 1983, M. van den Berg made his Fundamental Gap Conjecture about the difference between the first two Dirichlet eigenvalues (the fundamental gap) of any convex domain in the Euclidean plane. Recently, progress has been made in the case where the domains are polygons and, in particular, triangles. We examine the conjecture for triangles in hyperbolic geometry, though we seek an for an upper bound for the fundamental gap rather than a lower bound.
Resumo:
Impaired function of shoulder muscles, resulting from rotator cuff tears, is associated with abnormal deposition of fat in muscle tissue, but corresponding cellular and molecular mechanisms, likely reflected by altered gene expression profiles, are largely unknown. Here, an analysis of muscle gene expression was carried out by semiquantitative RT-PCR in total RNA extracts of supraspinatus biopsies collected from 60 patients prior to shoulder surgery. A significant increase of alpha-skeletal muscle actin (p = 0.0115) and of myosin heavy polypeptide 1 (p = 0.0147) gene transcripts was observed in parallel with progressive fat deposition in the muscle, assessed on parasagittal T1-weighted turbo-spin-echo magnetic resonance images according to Goutallier. Upregulation of alpha-skeletal muscle actin and of myosin heavy polypeptide-1 has been reported to be associated with increased muscle tissue metabolism and oxidative stress. The findings of the present study, therefore, challenge the hypothesis that increased fat deposition in rotator cuff muscle after injury reflects muscle degeneration.
Resumo:
We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds Σ by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat connections, reduces the complete partition function of the non-Abelian theory on M to a 2-dimensional Abelian theory on the orbifold Σ, which is easily evaluated.
Resumo:
The shortcomings of conventional discounting, especially in the context of long-run environmental problems, have been extensively discussed in the literature. Recently, hyperbolic discounting, i. e. discounting at declining instead of constant discount rates, has attracted a lot of interest among both scientists and politicians. Although there are compelling arguments for employing hyperbolic discounting, there are also pitfalls, which have to be pointed out. In this paper I show that the problem of time-inconsistency, an inherent characteristics of hyperbolic discounting, leads to a potential clash between economic efficiency and intergenerational equity. As an example, I refer to the weak progress in the controlling of greenhouse gas emissions under the Kyoto protocol. As the problem of time-inconsistency cannot be solved on economic grounds alone, there is a need for an intergenerational moral commitment.