994 resultados para Deformation structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two styrene-isoprene-styrene block copolymers Vector 4111 and 4113, exhibiting cylindrical (18 wt % PS) and spherical (16 wt % PS) morphology, respectively, have been examined under uniaxial elongation up to 200% strain. On the basis of stress-strain data, mechanical properties are compared for isotropic and oriented polystyrene domains. The structure at various stages of deformation has been determined from SAXS patterns in three planes and two principal deformation directions with respect to orientation. Samples showed a very high degree of hexagonal packing, resulting in an X-ray pattern taken parallel to the cylinder alignment approaching single crystal ordering. Cylinders were aligned with the closest packed planes parallel to film surface. Particular attention has been paid to a lattice deformation process occurring during the first stretching and relaxation cycle. For a copolymer with oriented cylindrical morphology the deformation was affine up to 120% strain. The microdomain spacing was calculated parallel and perpendicular to the stretching direction. The cylindrical microstructure orientation, quantified by Hermans' orientation factor reduced during elongation of oriented polymer, while the elongation of isotropic sample caused an increase of orientation. Deformation of all studied morphologies was reversible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modem polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25-60 degrees C. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60 degrees C), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45-50 degrees C) and had lower strain hardening. Strain hardening measured at 50 degrees C gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of I defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that dynamic shear plateau modulus is essentially independent of variations in MW amongst wheat varieties of varying baking performance and is not related to variations in baking performance, and that it is not the size of the soluble glutenin polymers, but the structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. The rheological properties of gas cell walls in bread doughs are considered to be important in relation to their stability and gas retention during proof and baking, in particular their extensional strain hardening properties. Large deformation rheological properties of gas cell walls were measured using biaxial extension for a number of doughs of varying breadmaking quality at constant strain rate and elevated temperatures in the range 25oC to 60oC. Strain hardening and failure strain of cell walls were both seen to decrease with temperature, with cell walls in good breadmaking doughs remaining stable and retaining their strain hardening properties to higher temperatures (60oC), whilst the cell walls of poor breadmaking doughs became unstable at lower temperatures (45oC to 50oC) and had lower strain hardening. Strain hardening measured at 50oC gave good correlations with baking volume, with the best correlations achieved between those rheological measurements and baking tests which used similar mixing conditions. As predicted by the Considere failure criterion, a strain hardening value of 1 defines a region below which gas cell walls become unstable, and discriminates well between the baking quality of a range of commercial flour blends of varying quality. This indicates that the stability of gas cell walls during baking is strongly related to their strain hardening properties, and that extensional rheological measurements can be used as predictors of baking quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Stokes drift induced by surface waves distorts turbulence in the wind-driven mixed layer of the ocean, leading to the development of streamwise vortices, or Langmuir circulations, on a wide range of scales. We investigate the structure of the resulting Langmuir turbulence, and contrast it with the structure of shear turbulence, using rapid distortion theory (RDT) and kinematic simulation of turbulence. Firstly, these linear models show clearly why elongated streamwise vortices are produced in Langmuir turbulence, when Stokes drift tilts and stretches vertical vorticity into horizontal vorticity, whereas elongated streaky structures in streamwise velocity fluctuations (u) are produced in shear turbulence, because there is a cancellation in the streamwise vorticity equation and instead it is vertical vorticity that is amplified. Secondly, we develop scaling arguments, illustrated by analysing data from LES, that indicate that Langmuir turbulence is generated when the deformation of the turbulence by mean shear is much weaker than the deformation by the Stokes drift. These scalings motivate a quantitative RDT model of Langmuir turbulence that accounts for deformation of turbulence by Stokes drift and blocking by the air–sea interface that is shown to yield profiles of the velocity variances in good agreement with LES. The physical picture that emerges, at least in the LES, is as follows. Early in the life cycle of a Langmuir eddy initial turbulent disturbances of vertical vorticity are amplified algebraically by the Stokes drift into elongated streamwise vortices, the Langmuir eddies. The turbulence is thus in a near two-component state, with suppressed and . Near the surface, over a depth of order the integral length scale of the turbulence, the vertical velocity (w) is brought to zero by blocking of the air–sea interface. Since the turbulence is nearly two-component, this vertical energy is transferred into the spanwise fluctuations, considerably enhancing at the interface. After a time of order half the eddy decorrelation time the nonlinear processes, such as distortion by the strain field of the surrounding eddies, arrest the deformation and the Langmuir eddy decays. Presumably, Langmuir turbulence then consists of a statistically steady state of such Langmuir eddies. The analysis then provides a dynamical connection between the flow structures in LES of Langmuir turbulence and the dominant balance between Stokes production and dissipation in the turbulent kinetic energy budget, found by previous authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present five profiles from electrical resistivity tomography (ERT), with surface constraints and gravity data, in the central uplift of the Araguainha impact structure in central Brazil. The central uplift, the overlying polymict breccias, and decameter-scale impact melt rocks are characterized by contrasting ranges of electrical resistivity. Our resistivity model provides empirical evidence that supports the existing model in which impact melt and breccias resurged toward the crater center in the final stages of the cratering process. On the basis of our results from the first use of ERT in impact cratering studies, we conclude that the deposition and flow of impact melt and breccias over the central uplift were influenced by the geometry of the lithologic boundaries in the central uplift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell shape, signaling, and integrity depend on cytoskeletal organization. In this study we describe the cytoskeleton as a simple network of filamentary proteins (links) anchored by complex protein structures (nodes). The structure of this network is regulated by a distance-dependent probability of link formation as P = p/d(s), where p regulates the network density and s controls how fast the probability for link formation decays with node distance (d). It was previously shown that the regulation of the link lengths is crucial for the mechanical behavior of the cells. Here we examined the ability of the two-dimensional network to percolate (i.e. to have end-to-end connectivity), and found that the percolation threshold depends strongly on s. The system undergoes a transition around s = 2. The percolation threshold of networks with s < 2 decreases with increasing system size L, while the percolation threshold for networks with s > 2 converges to a finite value. We speculate that s < 2 may represent a condition in which cells can accommodate deformation while still preserving their mechanical integrity. Additionally, we measured the length distribution of F-actin filaments from publicly available images of a variety of cell types. In agreement with model predictions, cells originating from more deformable tissues show longer F-actin cytoskeletal filaments. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Itaoca pluton consists of porphyritic monzogranite that intruded the upper crust into low-grade metasedimentary rocks of the Apiai Dornain (Ribeira Belt). Anisotropy of magnetic susceptibility and zircon U-Pb (Shrimp) geochronology were combined to determine pluton emplacement mechanisms and its chronology relative to the collision structures of the Paranapiacaba (Brasiliano II) orogenic system. Magnetic susceptibility ranges between 4 and 38 x 10(-3) SI, and thermomagnetic measurements indicate multidomain magnetite is the main carrier of anisotropy. The pluton shows an ""onion-skin"" structure roughly elongated to the northeast with its hinge zone including kilometer-wide roof-pendants. Magnetic lineations are variable in orientation in consistency with the dominant oblate symmetry of the magnetic fabric. A distinct NE-trending point-maxima, however, indicates the mean lineation is parallel to the stretching direction of the transpressive deformation that affected the regional host rocks. Prismatic zircon from the monzogranite, both in the core and in the finely-zoned margins, yielded an age of 623 +/- 10 Ma. These results suggest the magmatic fabric recorded the earlier strain increments of the regional shear deformation. It may correspond to the transition from continental arc to collision tectonics of the southern Ribeira Belt. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of hot working flow stress with strain is examined in torsion, uniaxial compression and channel die compression. The flow stress was found to be strongly dependent on texture and deformation mode. At low strains this dependency accounted for a difference in flow stress of up to a factor of two. At higher strains the influence of texture and deformation mode was less marked. The stresses corresponding to an equivalent strain of 0.5 were modelled using a power law expression with an activation energy of 147 kJ/mol and a strain rate exponent of 0.15. The influence of texture and deformation mode on flow stress is rationalised in terms of the influence of prismatic slip, twinning and dynamic recrystallisation on deformation stress and structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the effect of nominal equivalent strain (between 0 and 1.2), deformation temperature (790– 750°C) and carbon content (0.06 – 0.35%C) was investigated on ferrite grain refinement through dynamic strain induced transformation (DSIT) in plain carbon steels in single pass rolling. The microstructural evolution of the transformation of austenite to ferrite has been evaluated through the thickness of the strip. The results showed a number of important microstructural features as a function of strain, which could be classified into three regions; no DSIT region, DSIT region, and ultrafine ferrite (UFF) grain region. Hence, two critical strains; dynamic strain induced transformation (εC, DSIT) and ultrafine ferrite formation (εC, UFF) were determined. These strains were increased significantly with an increase in carbon content. The critical strain for UFF formation reduced with decrease in deformation temperature. The UFF microstructure consisted of ultrafine, equiaxed ferrite grains (<2 μm) with very fine cementite particles. In the centre of the rolled strip, there was a conventional ferrite– pearlite microstructure, although ferrite grain refinement and the volume fraction of ferrite increased with increase in the nominal equivalent strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of structure during the hot working of an austenitic Ni-30%Fe alloy is studied using EBSD analysis of samples tested in torsion. A microstructural map in temperature-strain space that plots grain size, cell size, fracture and dynamic recrystallization is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The refinement of ferrite grain size is the most generally accepted approach to simultaneously improve the strength and toughness in steels. Historically, the level of ferrite refinement is limited to 5-10 μm using conventional industrial approaches. Nowadays, though, several thermomechanical processes have been developed to produce ferrite grain sizes of 1-3 μm or less, ranging from extreme thermal and deformation cycles to more typical thermomechanical processes. The present paper reviews the status of the production of ultrafine grained steels through relatively simple thermomechanical processing. This requires deformation within the Ae3 to Ar3 temperature range for a given alloy. Here, the formation of ultrafine ferrite (UFF) involves the dynamic transformation of a significant volume fraction of the austenite to ferrite. This dynamic strain induced transformation (DSIT) arises from the introduction of extensive intragranular nucleation sites that are not present in conventional controlled rolling. The DSIT route has the potential to be adjusted to suit current industrial infrastructure. However, there are a number of significant issues that have been raised, both as gaps in our understanding and as obstacles to industrial implementation. One of the critical issues is that it appears that very large strains are required. Combined with this concern is the issue of whether a combination of dynamic and static transformation can be used to achieve an adequate level of refinement. Another issue that has also become apparent is that grain sizes of 1 μm can lead to low levels of ductility and hence many workers are attempting to obtain 2-3 μm grains, or to introduce a second phase to provide the required ductility. There are also a number of areas of disagreement between authors including the role of dynamic recrystallisation of ferrite in the production of UFF by DSIT, the reasons for the low coarsening rate of UFF grains, the role of microalloying elements and the effects of austenite grain size and strain rate. The present review discusses these areas of controversy and highlights cases where experimental results do not agree.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sydney Basin is located in the eastern part of Australia, Lachlan Fold Belt, and between the New England Fold Belt. From the Sydney basin at the end of the Late Carboniferous to Middle Triassic experienced back-arc spreading to the foreland basin at different stages: back-arc spreading stage (Carboniferous ), A passive thermal subsidence stage (early in the Permian Berry) and load deflection extruding stage (in Broughton Permian - Triassic). This time at the Sydney basin on the eastern side of the New England Fold Belt for the island Background of the arc. As a result, back-arc in the Permian Basin of the South Sydney basin by the back-arc spreading the eastern side of the arc and trench subduction before the impact of strong seismic activity, the development of a series of earthquake-related seismites to form various types and Seismic activity related to the deformation of soft sediment structure. Permian Basin, South Sydney's soft sediment deformation including cracks in shock-fold, liquefied vein, volcanic sand, load structure, flame Construction, pillow-like structure, spherical structure, pillow Layer structure slump, and so breccia. To which the cracks in shock-fold fibrillation is a direct result of earthquake faults and folds; pillow is a layer of sand caused by the earthquake fibrillation dehydration, the formation of the sinking; liquefied vein, Volcanic sand for the liquefaction of sand penetration of the formation of earthquake fissures formed; load structure, flame Construction, pillow-like structure, spherical structure is affected by the earthquake fibrillation in the sand, mudstone interface because of the sinking sand, mud layer formed through ; Slump structures and breccia of the earthquake was caused by the gravitational collapse or the formation of the debris flow. Fissures, earthquake-fold, liquefied vein, volcanic sand, load structure, flame Construction, pillow-like structure, spherical structure, pillow-like layer Equivalent to the original earthquake rocks the plot, and the slump structures and breccia of the plot belong to different earthquake rocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To compare hippocampal surface structure, using large deformation high dimensional mapping (HDM-LD), in subjects with temporal lobe epilepsy (TLE) with (HS+ve) and without (HS−ve) hippocampal sclerosis.

Methods
: The study included 30 HS−ve subjects matched with 30 HS+ve subjects from the previously reported epilepsy patient cohort. To control for normal right–left asymmetries of hippocampal surface structure, subjects were regrouped based on laterality of onset of epileptic seizures and presence of HS. Gender ratio, age, duration of epilepsy and seizure frequency were calculated for each of the four groups. Final HDM-LD surface maps of the right and left TLE groups were compared to define differences in subregional hippocampal involvement within the groups.

Results
: There were no significant differences in comparisons of the left TLE (left HS−ve compared with HS+ve) or right TLE (right HS−ve compared with HS+ve) groups with respect to age, duration of epilepsy or seizure severity scores. HDM-LD maps showed accentuated surface changes over the lateral hippocampal surface, in the region of the Sommer sector, in the hippocampi affected by HS. However, HS−ve hippocampi showed maximal surface changes in a different pattern, and did not involve the region of Sommer sector.

Conclusion
: We conclude that differences in segmental volume loss between the HS−ve and HS+ve groups are suggestive that the underlying pathophysiology of hippocampal changes in the two groups is different, and not related to chronic seizure duration or severity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The postdeformation recrystallization behavior of a hot-deformed austenitic stainless steel was investigated based on the first part of this study, in which the microstructure development during hot deformation and, in particular, the evolution of dynamic recrystallization (DRX), was studied. The effect of different parameters such as strain, strain rate, and temperature were examined. The dependency of the time for 50 pct softening, t 50, changed from “strain dependent” to “strain independent” at a transition strain (ε*) that was in the steady-state area of the hot deformation flow curve. The fully recrystallized microstructure showed a similar transition in strain sensitivity. However, this occurred at stains greater than ε*. A mathematical model was developed to predict the transition strain under different deformation conditions. Microstructural measurements show that the transition strain corresponds to approximately 50 pct DRX in the deformed structure at the point of unloading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hot deformation behavior of a 304 austenitic stainless steel was investigated to characterize the evolution of the dynamically recrystallized structure as a starting point for studies of the postdeformation  recrystallization behavior. The effect of different deformation parameters such as strain, strain rate, and temperature were investigated. The flow curves showed typical signs of dynamic recrystallization (DRX) over a wide range of temperatures and strain rates (i.e., different Zener–Hollomon (Z) values). However, under very high or very low Z values, the flow curves’ shapes changed toward those of the dynamic recovery and multiple peaks, respectively. The results showed that while DRX starts at a strain as low as 60 pct of the peak strain, a fully DRX microstructure needs a high strain of almost 4.5 times the initiation strain. The DRX average grain size showed power-law functions with both the Zener–Hollomon parameter and the peak stress, although power-law breakdown was observed at high Z values.