966 resultados para Decreasing Velocity
Resumo:
The property of crystal depends seriously on the solution concentration distribution near the growth surface of a crystal. However, the concentration distributions are affected by the diffusion and convection of the solution. In the present experiment, the two methods of optical measurement are used to obtained velocity field and concentration field of NaClO3 solution. The convection patterns in sodium chlorate (NaClO3) crystal growth are measured by Digital Particle image Velocimetry (DPIV) technology. The 2-dimentional velocity distributions in the solution of NaClO3 are obtained from experiments. And concentration field are obtained by a Mach-Zehnder interferometer with a phase shift servo system. Interference patterns were recorded directly by a computer via a CCD camera. The evolution of velocity field and concentration field from dissolution to crystallization are visualized clearly. The structures of velocity fields were compared with that of concentration field.
Resumo:
Overland flow on a hillslope is significantly influenced by its microtopography, slope length and gradient, and vegetative cover. A 1D kinematic wave model in conjunction with a revised form of the Green-Ampt infiltration equation was employed to evaluate the effect of these surface conditions. The effect of these conditions was treated through the resistance parameter in the kinematic wave model. The resistance in this paper was considered to be made up of grain resistance, form resistance, and wave resistance. It was found that irregular slopes with microtopography eroded more easily than did regular slopes. The effect of the slope gradient on flow velocity and flow shear stress could be negative or positive. With increasing slope gradient, the flow velocity and shear stress first increased to a peak value, then decreased again, suggesting that there exists a critical slope gradient for flow velocity and shear stress. The vegetative cover was found to protect soil from erosion primarily by enhancing erosion-resisting capacity rather than by decreasing the eroding capability of overland flow.
Resumo:
For solving complex flow field with multi-scale structure higher order accurate schemes are preferred. Among high order schemes the compact schemes have higher resolving efficiency. When the compact and upwind compact schemes are used to solve aerodynamic problems there are numerical oscillations near the shocks. The reason of oscillation production is because of non-uniform group velocity of wave packets in numerical solutions. For improvement of resolution of the shock a parameter function is introduced in compact scheme to control the group velocity. The newly developed method is simple. It has higher accuracy and less stencil of grid points.
Resumo:
Kinetics and its regulation by extrinsic physical factors govern selectin-ligand interactions that mediate tethering and rolling of circulating cells on the vessel wall under hemodynamic forces. While the force regulation of off-rate for dissociation of selectin-ligand bonds has been extensively studied, much less is known about how transport impacts the on-rate for association of these bonds and their stability. We used atomic force microscopy (AFM) to quantify how the contact duration, loading rate, and approach velocity affected kinetic rates and strength of bonds of P-selectin interacting with P-selectin glycoprotein ligand I (PSGL-1). We found a saturable relationship between the contact time and the rupture force, a biphasic relationship between the adhesion probability and the retraction velocity, a piece-wise linear relationship between the rupture force and the logarithm of the loading rate, and a threshold relationship between the approach velocity and the rupture force. These results provide new insights into how physical factors regulate receptor-ligand interactions.
Resumo:
For simulating multi-scale complex flow fields like turbulent flows, the high order accurate schemes are preferred. In this paper, a scheme construction with numerical flux residual correction (NFRC) is presented. Any order accurate difference approximation can be obtained with the NFRC. To improve the resolution of the shock, the constructed schemes are modified with group velocity control (GVC) and weighted group velocity control (WGVC). The method of scheme construction is simple, and it is used to solve practical problems.
Resumo:
To overcome the difficulty in the DNS of compressible turbulence at high turbulent Mach number, a new difference scheme called GVC8 is developed. We have succeeded in the direct numerical simulation of decaying compressible turbulence up to turbulent Mach number 0.95. The statistical quantities thus obtained at lower turbulent Mach number agree well with those from previous authors with the same initial conditions, but they are limited to simulate at lower turbulent Mach numbers due to the so-called start-up problem. The energy spectrum and coherent structure of compressible turbulent flow are analysed. The scaling law of compressible turbulence is studied. The computed results indicate that the extended self-similarity holds in decaying compressible turbulence despite the occurrence of shocklets, and compressibility has little effects on relative scaling exponents when turbulent Mach number is not very high.
Resumo:
The longitudinal structure function (LSF) and the transverse structure function (TSF) in isotropic turbulence are calculated using a vortex model. The vortex model is composed of the Rankine and Burgers vortices which have the exponential distributions in the vortex Reynolds number and vortex radii. This model exhibits a power law in the inertial range and satisfies the minimal condition of isotropy that the second-order exponent of the LSF in the inertial range is equal to that of the TSF. Also observed are differences between longitudinal and transverse structure functions caused by intermittency. These differences are related to their scaling differences which have been previously observed in experiments and numerical simulations.
Resumo:
We present in this paper the application of B-P constitutive equations in finite element analysis of high velocity impact. The impact process carries out in so quick time that the heat-conducting can be neglected and meanwhile, the functions of temperature in equations need to be replaced by functions of plastic work. The material constants in the revised equations can be determined by comparison of the one-dimensional calculations with the experiments of Hopkinson bar. It can be seen from the comparison of the calculation with the experiment of a tungsten alloy projectile impacting a three-layer plate that the B-P constitutive equations in that the functions of temperature were replaced by the functions of plastic work can be used to analysis of high velocity impact.
Resumo:
Capillary forces are significantly dominant in adhesive forces measured with an atomic force microscope (AFM) in ambient air, which are always thought to be dependent on water film thickness, relative humidity, and the free energy of water film. We study the nature of the pull-off force on a variety of surfaces as a function of tip velocity. It is found that the capillary forces are of relatively strong dependence on tip velocity. The present experiment is expected to provide a better understanding of the work mechanism of AFM in ambient air.
Resumo:
Surface coatings and treatments have been used to reduce material loss of components in bubbling fluidized bed combustors (FBCs). The performance of protective coatings in FBC boilers and laboratory simulations is reviewed. Important coating properties to minimize wastage appear to be high hardness, low oxidation rate, low porosity, high adhesion and sufficient thickness to maintain protection for a long period. Economic considerations and criteria for choosing a suitable coating or treatment are discussed for the different types of bubbling FBC. © 1995.
Resumo:
Theoretical predictions of the diameters of continuous ink-jets downstream of long nozzles are generalized to include the important cases of ink-jet fluids and shorter nozzles where the velocity profile at the nozzle exit is undeveloped (non-parabolic). Comparisons of the new predictions with experiments and simulations are made for fairly long nozzles with tapered profiles and short nozzles with conical profiles; experimental and simulated profiles are also compared downstream of the nozzle exit for both industrial and large scale ink-jet print heads. Precise measurements of the un-modulated jet diameters downstream of the nozzle exit can set really useful limits to the possible shapes of the flow profile right at the nozzle exit, and in particular allow some assessment of the axial velocity gradients and fluid shear rates at the nozzle exit where direct speed measurement is usually impractical. Simulations allow further study of the relaxation of the velocity profile downstream of the nozzle exit, and are reported for both un-modulated and modulated CIJ jetting. Implications of this work include speeding up CIJ simulations, absolute calibration of the applied CIJ system modulation, and the likely magnitude of dynamic surface tension effects on observed CIJ satellite speeds.
Resumo:
The experimental and theoretical studies are reported in this paper for the head-on collisions of a liquid droplet with another of the same fluid resting on a solid substrate. The droplet on the hydrophobic polydimethylsiloxane (PDMS) substrate remains in a shape of an approximately spherical segment and is isometric to an incoming droplet. The colliding process of the binary droplets was recorded with high-speed photography. Head-on collisions saw four different types of response in our experiments: complete rebound, coalescence, partial rebound With conglutination, and coalescence accompanied by conglutination. For a complete rebound, both droplets exhibited remarkable elasticity and the contact time of the two colliding droplets was found to be in the range of 10-20 ms. With both droplets approximately considered as elastic bodies, Hertz contact theory was introduced to estimate the contact time for the complete rebound case. The estimated result Was found to be on the same order of magnitude as the experimental data, which indicates that the present model is reasonable. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
With the PDPA (Phase Doppler Particle Analyzer) measurement technology, the probability distributions of particle impact and lift-off velocities on bed surface and the particle velocity distributions at different heights are detected in a wind tunnel. The results show that the probability distribution of impact and lift-off velocities of sand grains can be expressed by a log-normal function, and that of impact and lift-off angles complies with an exponential function. The mean impact angle is between 28 degrees and 39 degrees, and the mean lift-off angle ranges from 30 degrees to 44 degrees. The mean lift-off velocity is 0.81-0.9 times the mean impact velocity. The proportion of backward-impacting particles is 0.05-0.11, and that of backward-entrained particles ranges from 0.04 to 0.13. The probability distribution of particle horizontal velocity at 4 mm height is positive skew, the horizontal velocity of particles at 20 mm height varies widely, and the variation of the particle horizontal velocity at 80 mm height is less than that at 20 mm height. The probability distribution of particle vertical velocity at different heights can be described as a normal function.